Geri Dön

Beyaz eşyalar için yapay zeka algoritmaları ile fiyat-performans analizi

Price performance analysis by artificial intelligence algorithms for white goods

  1. Tez No: 877883
  2. Yazar: ENES KUMRU
  3. Danışmanlar: PROF. DR. BÜLENT ORAL, DR. ÖĞR. ÜYESİ MEHMET MURAT İSPİRLİ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Science and Technology, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Yapay Zeka, Makine Öğrenmesi, Makine Öğrenmesi Algoritmaları, Beyaz Eşya, Fiyat, Teknik Özellik, Arayüz, Optimizasyon, Modelleme, Performans, Artificial Intelligence, Machine Learning, Machine Learning Algorithms, White Goods, Price, Technical Specification, Interface, Optimization, Modeling, Performance
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: Marmara Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Elektronik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 152

Özet

Günümüzdeki teknolojik çalışmalara dikkat edildiğinde yapay zekanın ve makine öğrenmesinin önemi inkar edilemez derecededir. Bu tez çalışmasında da beyaz eşya özelinde yapay zekanın ve makine öğrenmesi algoritmalarının nasıl kullanılabileceği incelenmiştir. İlgili sitelerden çekilen güncel teknik veriler ile güncel teknik verileri çekilen ürünlere ait fiyatların belirtildiği sitelerden fiyat bilgileri elde edilerek, beyaz eşyaların sahip olduğu teknik özellikler ile fiyatları arasındaki ilişkiler optimize edilmiş, modellenmiş ve bazı çıkarımlarda bulunulmuştur. Fiyat – performans modellemesi 4 ayrı beyaz eşya grubunda yapılmıştır. Bunlar sırasıyla kurutma makinası, çamaşır makinası, bulaşık makinası ve buzdolabıdır. Belirtilen beyaz eşyaların bazı teknik verileri veri kazıma işlemine izin verilen ilgili sitelerden çekilip veritabanında tutulmuştur ve bu veriler kapsamında her bir beyaz eşya grubu özelinde müşteri için önemli olacak özellikler modellemeye dahil edilmiştir. Python programlama dilinde de bu modelleme görsel hale getirilmiş ve arayüz oluşturulmuştur. Oluşturulan arayüzde, her bir beyaz eşyada müşteri için en önemli teknik özellikler müşterinin seçimine bırakılmıştır. Seçilen teknik özellikler bağlamında, elde edilen güncel veriler baz alınarak, müşteriye istemiş olduğu beyaz eşya özelliklerine göre ortalama bir fiyat gösterilmektedir. Ayrıca müşteri arayüzde hangi markayı seçtiyse o markayla ilgili veri tabanındaki ürünler müşteri karşısına çıkmaktadır ve müşteri istediği ürüne tıklayarak ilgili ürünün sitesine yönlendirilmektedir. Müşteri hangi ürünün sitesine yönlendirilmek istiyorsa tıkladığı butondaki ürünün genişlik, yükseklik, derinlik ölçüsü bilgileri cm cinsinden ve ürünün sahip olduğu kapasite kg cinsinden gösterilmektedir. Belirtilen optimizasyon çalışmaları birçok makine öğrenmesi algoritmasıyla gerçekleştirilmiştir. Tahmin algoritmaları ve sınıflandırma algoritmaları, modelleme için ayrı ayrı değerlendirilmiştir. Algoritmaların içeriğinde yer alan bazı parametreler değiştirilerek aynı algoritmanın aynı veri seti üzerinde modelleme performanslarındaki değişimi de gözlemlenmiştir. Kısaca, her algoritmanın tezde belirtilen 4 beyaz eşya grubu için modelleme ve optimizasyon yeteneği gözlemlenmiştir.

Özet (Çeviri)

When considering today's technological studies, the importance of artificial intelligence and machine learning is undeniable. In this thesis study, how artificial intelligence and machine learning algorithms can be used specifically for white goods was examined. By obtaining current technical data from relevant sites and price information from sites where the prices of products whose updated technical data was taken were obtained, the relationships between the technical features of white goods and their prices have been optimized, modeled, and some inferences have been made. Price – performance modeling was performed in 4 separate white goods groups. These are drying machine, washing machine, dishwasher and refrigerator, respectively. Some technical data of the specified white goods were obtained from relevant sites where data scraping is allowed and kept in the database and in the context of this data features that will be important to the customer for each white goods group have been included in the modeling. This modeling has been made visual in the Python programming language and interface has been created. In the created interface, the most important features for each white goods were preferred by customers. In the context of the selected technical features, based on the current data obtained, an average price is shown to the customer according to the white goods features they wants. In addition, whichever brand has been selected by customer in the interface, the products in the database related to that brand are displayed to the customer and by clicking on the product they want, the customer is directed to the website of the relevant product. After the customers clicks on the button for the product which they wants to be directed, the product's width, length and depth informations are displayed as cm and the capacity of the product is displayed as kg. The specified optimization studies were carried out using many machine learning algorithms. Prediction algorithms and classification algorithms were evaluated separately for modelling. By changing some parameters in the content of the algorithms, the change in modeling performance of the same algorithm on the same data set was also observed. Briefly, the modeling and optimization ability of each algorithm for the 4 white goods groups mentioned in the thesis has been observed.

Benzer Tezler

  1. Tüketiciler yapay zekâya satın alma karar verme yetkisi verir mi?: Nitel bir araştırma

    Do consumers give ai the power to make buying decisions?: A qualitative study

    GÖKHAN KAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    İşletmeAnadolu Üniversitesi

    Pazarlama Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ DİLŞAD TEKİN

  2. Bir çamaşır makinesinin devir hızına bağımlı titreşimlerinin incelenmesi

    Investigations of speed dependent vibrations of a washing machine

    TUNÇ KARAÇALI

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. KENAN YÜCE ŞANLITÜRK

  3. Investigation of some additives used in the production of polymer containing materials

    Polimer içerikli malzeme üretiminde kullanılan bazı katkı malzemelerinin incelenmesi

    HALE TOZLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2012

    Polimer Bilim ve Teknolojisiİstanbul Teknik Üniversitesi

    Polimer Bilim ve Teknolojisi Ana Bilim Dalı

    PROF. DR. NURSELİ UYANIK

  4. A multi-objective mathematical model for the operations planning of a reverse logistics facility and an application

    Tersine lojistik tesisinin operasyon planlamasına ilişkin çok amaçlı bir matematiksel model ve bir uygulama

    EMİNE NİSA CAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ŞULE ITIR SATOĞLU

  5. Infrastructure independent pedestrian localization using dead reckoning and particle filter

    Parakete seyri hesabı ve parçacık filtresi ile altyapısız yaya konum belirleme

    MEHMET ENES CAVLI

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. HAKAN TEMELTAŞ