Geri Dön

Trafik sinyal sistemini iyileştirmek için bulanık mantık ve makine öğrenmesinin entegrasyonu

Integrating fuzzy logic and machine learning to improve traffic signal system

  1. Tez No: 890539
  2. Yazar: ABDULLAHI BASHI
  3. Danışmanlar: PROF. DR. ABDURAZZAG ALI A ABURAS
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Uyarlanabilir Trafik Kontrolü, Bulanık Mantık, Sumo
  7. Yıl: 2024
  8. Dil: İngilizce
  9. Üniversite: BEYKOZ ÜNİVERSİTESİ
  10. Enstitü: Lisansüstü Programlar Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 87

Özet

1868 yılında icat edildiklerinden bu yana trafik sinyal sistemleri, çağdaş şehirlerin trafik yönetiminde önemli bir rol oynamıştır. Geliştirilmiş trafik yönetimi, günlük yolculukların kolaylığını sağlamakla kalmaz, aynı zamanda çevresel sürdürülebilirlik açısından da önem taşır. Trafik sinyal sistemlerinin birincil amacı kazaları azaltmak ve yaya ve araç hareketlerini yönetmek olsa da, geleneksel trafik sinyal sistemleri, kentsel genişlemenin değişken karakteristiklerine uyum sağlamakta sıklıkla zorlanmaktadır. Tarih boyunca, sabit trafik sinyal sistemleri, kentsel trafiğin düzenlenmesi ve düzenin sağlanması için hizmet etmiştir. Ancak, bu sistemler mevcut trafik gereksinimlerini yeterince karşılayamamaktadır. Sensörler ve dedektörler gibi yeni teknolojiler, gerçek zamanlı trafik koşullarına dayalı olarak trafik sinyallerinin zamanlamasını dinamik olarak değiştirerek bu sorunu çözmektedir. Bulanık mantık, bu bağlamda trafik sinyal kontrolünü iyileştirmek için uygun fırsatlar sunmaktadır. Belirsiz veya şüpheli verileri işleme yeteneği sayesinde bulanık mantık, trafik kontrolünün daha incelikli kararlar almasına olanak tanır. Bulanık mantık algoritmalarının trafik sinyal sistemlerine entegrasyonu, uzman bilgisi ve gerçek zamanlı verileri kullanarak gelişmiş karar alma süreçlerini kolaylaştırır. Bu, daha duyarlı ve uyumlu trafik yönetim stratejilerinin uygulanmasını sağlar. Araştırmamız, trafik yönetimi için zeki çözümler geliştirmek amacıyla bulanık mantık ve makine öğrenmesi metodolojilerini trafik sinyal sistemlerine entegre etmeyi hedeflemektedir. Hedefimiz, Şehir İçi Hareketlilik Simülasyonu (SUMO) kurulumu kullanarak bireysel kavşaklarda trafik akışını başarıyla simüle etmektir. Amacımız, trafik koşullarındaki dalgalanmalara yanıt olarak sinyal zamanlamasını dinamik olarak değiştirme yeteneğine sahip makine öğrenmesi algoritmaları ve bulanık mantık içeren uyarlanabilir trafik kontrol sistemleri oluşturmaktır. Bulanık mantık ve makine öğrenmesinin Özet Trafik Sinyal Sistemini İyileştirmek İçin Bulanık Mantık ve Makine Öğrenmesinin Entegrasyonu 1868 yılında icat edildiklerinden bu yana trafik sinyal sistemleri, çağdaş şehirlerin trafik yönetiminde önemli bir rol oynamıştır. Geliştirilmiş trafik yönetimi, günlük yolculukların kolaylığını sağlamakla kalmaz, aynı zamanda çevresel sürdürülebilirlik açısından da önem taşır. Trafik sinyal sistemlerinin birincil amacı kazaları azaltmak ve yaya ve araç hareketlerini yönetmek olsa da, geleneksel trafik sinyal sistemleri, kentsel genişlemenin değişken karakteristiklerine uyum sağlamakta sıklıkla zorlanmaktadır. Tarih boyunca, sabit trafik sinyal sistemleri, kentsel trafiğin düzenlenmesi ve düzenin sağlanması için hizmet etmiştir. Ancak, bu sistemler mevcut trafik gereksinimlerini yeterince karşılayamamaktadır. Sensörler ve dedektörler gibi yeni teknolojiler, gerçek zamanlı trafik koşullarına dayalı olarak trafik sinyallerinin zamanlamasını dinamik olarak değiştirerek bu sorunu çözmektedir. Bulanık mantık, bu bağlamda trafik sinyal kontrolünü iyileştirmek için uygun fırsatlar sunmaktadır. Belirsiz veya şüpheli verileri işleme yeteneği sayesinde bulanık mantık, trafik kontrolünün daha incelikli kararlar almasına olanak tanır. Bulanık mantık algoritmalarının trafik sinyal sistemlerine entegrasyonu, uzman bilgisi ve gerçek zamanlı verileri kullanarak gelişmiş karar alma süreçlerini kolaylaştırır. Bu, daha duyarlı ve uyumlu trafik yönetim stratejilerinin uygulanmasını sağlar. Araştırmamız, trafik yönetimi için zeki çözümler geliştirmek amacıyla bulanık mantık ve makine öğrenmesi metodolojilerini trafik sinyal sistemlerine entegre etmeyi hedeflemektedir. Hedefimiz, Şehir İçi Hareketlilik Simülasyonu (SUMO) kurulumu kullanarak bireysel kavşaklarda trafik akışını başarıyla simüle etmektir. Amacımız, trafik koşullarındaki dalgalanmalara yanıt olarak sinyal zamanlamasını dinamik olarak değiştirme yeteneğine sahip makine öğrenmesi algoritmaları ve bulanık mantık içeren uyarlanabilir trafik kontrol sistemleri oluşturmaktır. Bulanık mantık ve makine öğrenmesinin kentsel ortamlarda potansiyel faydaları arasında trafik akışının optimize edilmesi, tıkanıklığın azaltılması ve yakıt tüketiminin minimize edilmesi yer almaktadır. Amacımız, bu teknolojileri kullanarak çağdaş kentsel ulaşım sistemlerinde güvenlik, verimlilik ve sürdürülebilirliğin artırılmasına olumlu katkılarda bulunmaktır.

Özet (Çeviri)

Since their invention in 1868, traffic signal systems have significantly influenced how contemporary cities manage their traffic. Enhanced traffic management not only promotes the ease of daily commutes but also has implications for environmental sustainability. Although their primary objective is to mitigate accidents and govern the movement of pedestrians and vehicles, conventional traffic signal systems frequently encounter difficulties in adjusting to the ever-changing characteristics of urban expansion. Throughout history, fixed traffic signal systems have served to regulate and establish order in the realm of urban traffic. Nevertheless, these systems fail to adequately address the current traffic requirements. Emerging technologies like sensors and detectors are tackling this issue by dynamically altering the timing of traffic signals based on real-time traffic conditions. Fuzzy logic present viable opportunities for improving traffic signal control within this particular framework. Due to its capacity to process imprecise or dubious data, fuzzy logic enables traffic control to make more nuanced decisions. The incorporation of fuzzy logic algorithms into traffic signal systems facilitates advanced decision-making by leveraging expert knowledge and real-time data. This empowers the implementation of traffic management strategies that are more responsive and adaptable. Our research centers on the examination of both fuzzy logic and machine learning methodologies into traffic signal systems to develop intelligent solutions for traffic management. Our objective is to successfully simulate traffic flow at individual intersections by utilizing the Simulation of Urban Mobility (SUMO) setup. Our objective is to create adaptive traffic control systems that feature machine-learning algorithms and fuzzy logic. These systems should have the ability to dynamically modify signal timing in response to fluctuations in traffic conditions. The potential benefits of fuzzy logic and also machine learning in urban environments include the optimization of traffic flow, the reduction of congestion, and the minimization of fuel consumption. Our objective is to make a positive contribution to the enhancement of safety, efficiency, and sustainability in contemporary urban transportation systems through the utilization of these technologies. Keyword: Adaptive Traffic control, Fuzzy Logic, Sumo, Machine Learning

Benzer Tezler

  1. Power allocation for cooperative NOMA systems based on adaptive-neuro fuzzy inference system

    Uyarlanabilir nöro bulanık çıkarım sistemine dayalı işbirlikli NOMA sistemleri için güç tahsisi

    MELİKE NUR ÜÇBAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. HAKAN ALİ ÇIRPAN

  2. İzole sinyalize kavşaklarda yapay zekâ teknikleri ile trafik sinyal kontrolü ve optimizasyonu

    Optimization and control of traffic signal with artificial intelligence techniques at isolated signalized intersections

    ERSİN KORKMAZ

    Doktora

    Türkçe

    Türkçe

    2019

    UlaşımKırıkkale Üniversitesi

    İnşaat Ana Bilim Dalı

    PROF. DR. ALİ PAYIDAR AKGÜNGÖR

  3. Analysing traffic network parameters after implementing one-way method: Hatay, Dörtyol case study

    Tek yön uygulaması sonrasından trafik ağı durum değerlendirmesi: Hatay, Dörtyol örneği

    NIMA ALIZADEH

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Trafikİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ OSMAN ATAHAN

  4. Genelleştirilmiş frekans bölmeli çoklu erişim tekniğinin akıllı yüzeylerdeki performansının incelenmesi

    Investigation of the performance of generalized frequency division multiplexing access technique on large intelligent surfaces

    RAMAZAN AYDEMİR

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Elektrik ve Elektronik MühendisliğiYıldız Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. HACI İLHAN

  5. Channel modeling for vehicular visible light communication

    Araç görünür ışık iletişimi için kanal modelleme

    HOSSIEN BADR HOSSIEN ELDEEB

    Doktora

    İngilizce

    İngilizce

    2021

    Elektrik ve Elektronik MühendisliğiÖzyeğin Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    Prof. Dr. MURAT UYSAL