Geri Dön

An energy optimization algorithm for cloud computing

Bulut bilişim için bir enerji optimizasyon algoritması

  1. Tez No: 894843
  2. Yazar: OĞUZHAN ŞEREFLİŞAN
  3. Danışmanlar: PROF. DR. MURAT KOYUNCU
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Yazılım Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Yazılım Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 122

Özet

Bu tezde, özellikle enerji tüketimini optimize etmeye odaklanan, konteyner yönetimi için özel olarak uyarlanmış Sanal Makine (VM) tahsisi için kullanılan Best-Fit algoritmasının varyantlarının ve Genetik Algoritmaların (GA'lar) yenilikçi entegrasyonu incelenmektedir. Bulut hizmetlerine olan artan talep, daha enerji verimli veri merkezi yönetim stratejilerinin geliştirilmesini gerektirmiştir. Geleneksel VM tahsis yöntemleri genellikle optimal kaynak kullanımını hedefleseler de artan enerji israfına yol açabilmektedirler. Bu araştırma, verimli bir şekilde kutu paketleme problemlerinde kullanılan ve enerji kullanımını baz alarak genetik algoritmanın seçme işlemi için uyarlanan ve enerji tüketimi odaklı olarak Best-Fit algoritması varyantı ile enerji kullanımına ve gelen iş yüküne göre değişken olan Genetik Algoritma varyantının birlikte uyarlanmasına dayanan, yeni bir yaklaşım önermektedir. Bu yaklaşım Maksimum Kullanıma Dayalı Genetik Algoritma (MUBGA) olarak adlandırılmıştır. MUBGA, VM'leri kaynak kullanımındaki boşlukları minimize etmek için sanal makineleri ve konteynerleri akıllıca tahsis ederken, GA bileşeni, tahsis stratejisini, sürekli olarak değişen yük ve altyapı koşullarına uyum sağlamak üzere evrimleştirir. CloudSim ortamında yapılan bir dizi simülasyon, önerilen modelin enerji verimliliği ve hesaplama yükü açısından standart tahsis stratejilerine karşı performansını değerlendirmiştir. Ayrıca MUBGA, VM yerleştirme ve seçim aşamalarında, daha önce test edilmiş olan İlk Uyan (FF), Çeyrekler Arası Aralık (IQR), Maksimum Korelasyon (MC), Minimum Taşıma Süresi (MMT), Medyan Mutlak Sapma (MAD), Yerel Regresyon (LR) ve Statik Eşik (THR) gibi mevcut algoritmalar ile karşılaştırılmıştır. Sonuçlar, MUBGA olarak adlandırılan yeni geliştirilen algoritmanın, Hizmet Seviye Anlaşması (SLA) konusunda hafif bir hizmet kaybı olsa bile, özellikle büyük veri merkezlerinde, belirgin bir enerji tasarrufu sağladığını göstermektedir. Bu çalışma ile gerçek dünya bulut bilişim ortamlarında bu hibrit yaklaşımın potansiyelini ortaya konmaktadır. Bu çalışma, sadece konteyner tahsisinde teorik ilerlemelere katkıda bulunmakla kalmayıp, aynı zamanda veri merkezlerinde enerjiye duyarlı kaynak yönetimi için pratik sonuçlar sunmaktadır.

Özet (Çeviri)

In this thesis, the innovative integration of the Best-Fit variant and Genetic Algorithms (GAs) for Virtual Machine (VM) allocation tailored specifically for container orchestration, with a primary focus on optimizing energy consumption is explored. The escalating demand for cloud services has necessitated the development of more energy-efficient data center management strategies. Traditional VM allocation methods often lead to suboptimal resource utilization and increased energy wastage. This research proposes a novel approach by adapting the Best-Fit variant algorithm in respect of energy consumption and implementing for selection process of GA and enhancing it with the robust optimization capabilities of GAs named as Maximum Utilization Based Genetic Algorithm (MUBGA). The MUBGA intelligently allocates VMs and containers to minimize the gaps in resource utilization, while the GA component continuously evolves the allocation strategy to adapt to changing loads and infrastructure conditions. A series of simulations on a CloudSim environment assess the performance of the proposed model against standard allocation strategies in terms of energy efficiency. The algorithm under investigation underwent testing during the VM allocation and selection phases on hosts. It is benchmarked against several existing algorithms, including First-Fit, Inter Quartile Range (IQR), Maximum Correlation (MC), Minimum Migration Time (MMT), Median Absolute Deviation (MAD), Local Regression (LR), and Static Threshold (THR). The results indicate that the proposed algorithm, referred to MUBGA, provides significant energy savings, particularly in large data centers, even if there is a slight trade-off in meeting the Service Level Agreement (SLA). This study not only contributes to theoretical advancements in container allocation but also offers practical implications for energy-aware resource management in data centers.

Benzer Tezler

  1. Providing an energy-aware method in cloud computing systems by using the cat optimization algorithm

    Bulut bilgisayar sistemlerinde cat optimizasyon algoritmasıyla enerji bilinçli bir yöntem sağlamak

    ZAINAB SALAH ABDULAMEER AL-KAROOSHI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    Assist. Prof. Dr. ASST. PROF. DR. MUHAMMAD ILYAS

  2. A utilization based genetic algorithm for virtual machine placement in cloud computing systems

    Bulut sistemlerinde sanal makine yerleştirimi için faydalanma temelli bir genetik algoritma

    MUSTAFA CAN ÇAVDAR

    Yüksek Lisans

    İngilizce

    İngilizce

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ÖZGÜR ULUSOY

    DOÇ. DR. İBRAHİM KÖRPEOĞLU

  3. Networked computing-based system identification and control of electromechanical systems with industrial IoT

    Endüstriyel IoT ile elektromekanik sistemlerin ağ hesaplama tabanlı sistem tanıma ve kontrolü

    RAMAZAN KAYA

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ALİ FUAT ERGENÇ

  4. Resource allocation in vehicular edge computing networksbased on deep reinforcement learning

    Araç uç bilişiminde derin pekiştirmeli öğrenmeye dayalıkaynak tahsisi

    HOMA MALEKI

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    PROF. DR. LÜTFİYE DURAK ATA

  5. Sis tabanlı nesnelerin interneti mimarisinde metasezgisel algoritma ile performans optimizasyonu

    Performance optimization with metaheuristic algorithm in fog based internet of things architecture

    RIZA ALTUNAY

    Doktora

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilişim Sistemleri Ana Bilim Dalı

    PROF. DR. ÖMER FARUK BAY