An integrated machine learning and metaheuristic approach for cryptocurrency price prediction
Kripto para fiyatı tahmininde makine öğrenmesi ve metasezgisel entegre bir yaklaşım
- Tez No: 899233
- Danışmanlar: DR. ÖĞR. ÜYESİ MERVE ER, PROF. SENİYE ÜMİT FIRAT
- Tez Türü: Yüksek Lisans
- Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2024
- Dil: İngilizce
- Üniversite: Marmara Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Endüstri Mühendisliği Bilim Dalı
- Sayfa Sayısı: 66
Özet
Kripto para ticareti, finans dünyasındaki en iyi ticaret araçlarından birine öncülük etmektedir. Merkeziyetsizlikteki benzersiz özellikleri, hızla büyümelerini sağlamaktadır. Finans dünyasında dolaşan binden fazla coin bulunmaktadır. Bu devasa miktardaki coin, birçok farklı piyasa platformunda takas edilebilir. Finansal yatırımcılar ve diğer son kullanıcılar, piyasa oynaklığı ve hacmi nedeniyle kripto para tahminine önemli ilgi duymaktadırlar. Makine öğrenimi, geleneksel teknik analizin yanı sıra finans sektöründe farklı varlık tahminlerinde kullanılan umut verici bir araçtır. Son zamanlarda kripto para tahmininde makine öğreniminin kullanılmasına yönelik araştırmalar tatmin edici sonuçlar göstermektedir. Destek Vektör Regresyonu (DVR) algoritması, makine öğrenimi alanında kendi yüksek doğruluğunu elde etme konusunda ün kazanmıştır. Bu tez, en popüler kripto para olan Bitcoin'in saatlik fiyatlarını tahmin etmek için eğitim verisi olarak finansal kapsamlı teknik göstergeler kullanan SVR modelinin optimizasyonundan oluşan bir çerçeve önermektedir. Çerçevenin optimizasyon bileşeni, ateş böceğinin yanıp sönmesinden esinlenen yeni ve iyi bilinen bir metasezgiseli, Ateşböceği Algoritmasını (AA) kullanır. Ateşböceği Algoritması, iki önemli görevi optimize etmek için çerçeveye yerleştirilmiştir; özellik seçimi ve DVR parametrelerinin ayarlanması. Önerilen model, Destek Vektör Regresyonu, Çok Katmanlı Nöron Ağları ve ARIMA yaklaşımları ile karşılaştırıldığında daha iyi bir performans göstermiştir.
Özet (Çeviri)
Cryptocurrency trading is leading to one of the best trading instruments in the finance world. Their unique characteristics on decentralization enable them to grow rapidly. There are more than one thousand coins rolling in financial worlds. This huge number of coins can be exchanged in many different market platforms. Financial traders and other end users have significant interest on prediction of cryptocurrencies due to market volatility and volume. Machine learning is already a promising tool used in different assets' prediction in financial industry besides traditional technical analysis. Recent researches on using machine learning in cryptocurrency prediction show satisfied outcomes. Support Vector Regression (SVR) algorithm has reputation on achieving higher accuracy in machine learning domain. This thesis proposes a framework constituted of optimization of SVR model using financial extensive technical indicators as training data to predict hourly prices of the most popular cryptocurrency, Bitcoin. The optimization component of the framework employs a newly well-known metaheuristic inspired by flashing of firefly, Firefly Algorithm (FA). Firefly Algorithm is put into the framework to optimize two important tasks; feature selection and setting parameters of SVR. The proposed model shows better performance compared to regular Support Vector Machine, MLP, and ARIMA approaches.
Benzer Tezler
- Veri mahremiyetinin ve istatistiki özelliklerin korunmasında makine öğrenimi ile meta sezgisel yöntemlerin entegrasyonu
Integrating machine learning and meta heuristics in protecting data privacy and statistical properties
ÖZGÜR SAĞIR
Yüksek Lisans
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKOCAELİ SAĞLIK VE TEKNOLOJİ ÜNİVERSİTESİBilişim Sistemleri Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ULAŞ VURAL
- Contributions to the determination of optimized driving strategies for electric vehicles using artificial intelligence based methods
Elektrikli araçlar için yapay zeka tabanlı yöntemlerle en uygunlaştırılmış sürüş stratejilerinin belirlenmesine katkılar
UFUK BOLAT
Yüksek Lisans
İngilizce
2025
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektrik Mühendisliği Ana Bilim Dalı
DOÇ. DR. DERYA AHMET KOCABAŞ
DOÇ. DR. GÜLCİHAN ÖZDEMİR
- Yüksek düzeyde sentezlemede hızlı tasarım alanı keşfi için makine öğrenmesi tabanlı yeni bir optimizasyon yöntemi
A novel machine learning-based optimization methodology for fast design space exploration in high-level synthesis
ESRA ÇELİK
Doktora
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAtatürk ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. DENİZ DAL
- Federe öğrenme tabanlı üroflovmetri patern sınıflandırması ve evde sağlık hizmetleri entegre karar destek modeli
Federated learning-based uroflowmetry pattern classification and home health services integrated decision support model
ÖMER ALGORABİ
Doktora
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Üniversitesi-CerrahpaşaEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. YUSUF SAİT TÜRKAN
- Darboğaz bir makinada metasezgisel yöntemlerletoplam hazırlık zamanı minimizasyonu
Minimization of total setup time on a bottleneck machine using metaheuristic methods
MUHAMMET AYDIN
Yüksek Lisans
Türkçe
2025
Endüstri ve Endüstri MühendisliğiSakarya ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ HALİL İBRAHİM DEMİR