Detection of human emotional parameters under different olfactory stimuli using EEG signals and deep learning
Farklı koku uyaranları altında EEG sinyalleri ve derin öğrenme kullanılarak insan duygusal parametrelerinin tespiti
- Tez No: 962015
- Danışmanlar: PROF. DR. AYDIN AKAN
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: İngilizce
- Üniversite: İzmir Ekonomi Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 81
Özet
İnsan duygusal parametrelerinin kestirimi; insan-bilgisayar etkileşimi, terapötik teknolojiler ve nöropazarlama alanlarında önemli bir rol oynamaktadır. Son yıllarda, yapay zekâ destekli biyosinyal tabanlı yöntemler, geleneksel öznel değerlendirme tekniklerinin yerini almaya başlamıştır. Bu çalışmada, koku uyaranlarıyla tetiklenen duygusal tepkilerin EEG sinyalleriyle tespiti araştırılmıştır. 46 katılımcıdan, dört farklı koku ve bir kokusuz kontrol koşulu altında EEG verisi toplanmıştır. Zaman alanı özellikleri çıkarılarak topografik beyin haritalarına (TopoMap) dönüştürülmüş ve bu haritalar, duyguların uyarılma (arousal) ve değerlik (valence) boyutlarında sınıflandırılması amacıyla evrişimli sinir ağları (CNN) ile analiz edilmiştir. Elde edilen sonuçlar, koku uyaranlarının sınıflandırma başarımı üzerinde anlamlı etkileri olduğunu ve özellikle EfficientNet mimarisinin, EEG'ye dayalı duygusal durumları uzamsal olarak başarıyla öğrenebildiğini göstermiştir. Bu bulgular, kokuya dayalı nörobilimsel araştırmalar, duygu tanıma sistemleri ve nöropazarlama uygulamaları için yapay zekâ tabanlı yöntemlerin geliştirilmesine katkı sunmaktadır.
Özet (Çeviri)
The estimation of human emotional parameters plays a vital role in human-computer interaction, therapeutic technologies, and neuromarketing. In recent years, biosignal-based methods supported by artificial intelligence have gained prominence over traditional self-report-based techniques. This study investigates how emotional responses, elicited by olfactory stimuli, can be detected using EEG signals processed with deep learning. EEG data were collected from 46 participants under four different odors and one odorless control condition. Time-domain features were extracted and visualized as topographic brain maps (TopoMaps). These maps were classified using convolutional neural networks (CNNs) to estimate arousal and valence levels. The results indicate that olfactory stimuli significantly affect classification performance and that CNN-based architectures—especially EfficientNet—can effectively learn spatial EEG patterns related to emotional states. These findings contribute to the development of AI-based approaches in olfactory neuroscience, emotion recognition, and neuromarketing applications.
Benzer Tezler
- Real-time emotion recognition from EEG signals using one electrode device
Tek elektrotlu cihaz ile EEG sinyallerinden gerçek zamanlı duygu tanıma
MEHMET ALİ SARIKAYA
Yüksek Lisans
İngilizce
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. GÖKHAN İNCE
- Elektroensefalografi (EEG) sinyali kullanılarak yapay zeka tabanlı duygu kestirimi
Emotion prediction using artificial intelligence based on electroencephalography (EEG) signals
ELİF ÇAVUŞ
Yüksek Lisans
Türkçe
2024
Elektrik ve Elektronik MühendisliğiSakarya ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET RECEP BOZKURT
- Ses analizinde akustik parametrelerin tespiti ve anksiyete bozukluğunun akustik parametrelerle ilişkisinin araştırılması
The detection of acoustic parameters in the voice analysis and the investigation of relationship with acoustic parameters of anxiety disorders
TURGUT ÖZSEVEN
Doktora
Türkçe
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. MUHARREM DÜĞENCİ
- Çalışma belleği ve negatif değerlikli duyguların EEG tabanlı kestirim sistemi
EEG based working memory and negative emotional valence estimation system
BORA CEBECİ
Doktora
Türkçe
2021
Biyomühendislikİstanbul Üniversitesi-CerrahpaşaBiyomedikal Mühendisliği Ana Bilim Dalı
PROF. DR. AYDIN AKAN
- Emotion recognition using deep learning focusing on the hand and facial expressions
El ve yüz ifadelerine odaklanan derin oğrenmeyi kullanarak duygu tanıma
HASANAIN JAWAD RADEEF
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAnkara ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. YILMAZ AR