Intelligent health monitoring in 6G networks: Machine learning-enhanced VLC-based medical body sensor networks
6G ağlarında akıllı sağlık izleme: Makine öğrenmesi destekli VLC tabanlı medikal vücut sensör ağları
- Tez No: 962394
- Danışmanlar: YRD. DOÇ. DR. FARSHAD MİRAMİRKHANİ
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: İngilizce
- Üniversite: Işık Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 199
Özet
Yapay Zeka (YZ) destekli kablosuz haberleşmedeki son gelişmeler, elektromanyetik girişim kaygıları nedeniyle geleneksel Radyo Frekansı (RF) sistemlerinin kısıtlamalarla karşılaştığı hastaneler gibi kritik ortamlarda Altıncı Nesil (6G) teknolojilerinin benimsenmesini hızlandırmaktadır. Mevcut LED tabanlı aydınlatma altyapısını kullanan Görünür Işık Haberleşmesi (VLC), yüksek hızlı veri iletimi ve azaltılmış elektromanyetik girişim (EMI) gibi ikili avantaj sunmaktadır. Ancak, klinik ortamlardaki hasta hareketleri sinyal alımında önemli değişkenliğe neden olmakta ve kanal özelliklerini dinamik olarak değiştirmektedir. Bu araştırma, farklı hastane senaryolarında VLC tabanlı Medikal Vücut Sensör Ağları (MBSN) kanallarını modellemek için ortama özgü ışın izleme ile Makine Öğrenmesi (ML) tekniklerini birleştiren yenilikçi bir metodoloji sunmaktadır. İlk katkı, önceden çevresel veriye ihtiyaç duymadan gerçek zamanlı olarak hedef sembol hata oranlarını (SER) koruyabilen Q-öğrenme güdümlü uyarlanabilir modülasyon algoritmasının uygulanmasını içermektedir. İkinci bileşen, değişken hastane koşullarında yol kaybı ve Kök Ortalama Kare (RMS) gecikme yayılımını tahmin etmek için bir Uzun Kısa Süreli Bellek (LSTM) modeli tasarlamayı kapsamaktadır. Üçüncü katkı, doğru hasta konumlandırması için altı farklı algoritmayı—Doğrusal Regresyon, Destek Vektör Regresyonu, K-En Yakın Komşu, Çok Katmanlı Algılayıcı (MLP), LSTM ve Geçitli Tekrarlayan Birimler—değerlendiren kapsamlı bir ML tabanlı konum tahmin çerçevesi sunmaktadır. Bugüne kadar, bu çalışma tıbbi ortamlarda ışın izlemeli Kanal Darbe Yanıtı (CIR) modellemesini ML güdümlü analizle birleştiren ilk çalışma olarak görünmektedir. Simülasyon bulguları, Q-öğrenme modelinin güvenilir bir şekilde SER hedeflerini karşıladığını ve spektral verimliliğin (SE) eşik seviyesine yakın koşullarda optimale yakın performans gösterdiğini ortaya koymaktadır. Ayrıca, LSTM tabanlı tahminler, Yoğun Bakım Ünitesi (YBÜ) senaryosunda D1 konumundaki sensörün hem yol kaybı (1.6797 dB) hem de RMS gecikme yayılımı (1.0567 ns) için en büyük Kök Ortalama Kare Hatasını (RMSE) ürettiğini göstermektedir. Buna karşılık, Aile Tipi Hasta Odasında (ATHO) D3 sensörü, yol kaybında (1.0652 dB) ve gecikme yayılımında (0.7657 ns) en yüksek RMSE değerlerini vermekte ve gerçekçi çalışma koşullarında güçlü tahmin performansını doğrulamaktadır. Konum tahmini için MLP, optimal mimari olarak öne çıkmakta, ATHO'da birleşik D1-D2-D3 sensör konfigürasyonları için 58.6 cm'lik metre altı doğruluk elde etmekte, bireysel sensörler 63.5 cm (D1), 75.0 cm (D2) ve 73.1 cm (D3) değerleri vermekte, daha karmaşık YBÜ ortamında ise MLP, D1-D2-D3 için 217.1 cm'lik klinik olarak kabul edilebilir hassasiyeti korumakta, eşleştirilmiş konfigürasyonlar 202.1 cm (D1-D2) ve 216.3 cm (D1-D3) elde etmekte, tüm bunları sıralı modellere kıyasla %35-48 hesaplama gereksinimi azaltması ve %37-89 daha hızlı hiperparametre optimizasyonu ile sunarak sağlık tesislerinde gerçek zamanlı hasta takibi için en pratik çözüm olmaktadır.
Özet (Çeviri)
Recent advancements in Artificial Intelligence (AI)-enabled wireless communication are accelerating the adoption of Sixth Generation (6G) technologies in critical environments such as hospitals, where traditional Radio Frequency (RF) systems face limitations due to electromagnetic interference concerns. Visible Light Communication (VLC), which utilizes existing LED-based lighting infrastructure, offers the dual advantage of high-speed data transmission and reduced electromagnetic interference (EMI). However, patient movement within clinical environments introduces considerable variability in signal reception and alters channel characteristics dynamically. This research introduces an innovative methodology that merges site-specific ray tracing with Machine Learning (ML) techniques to model VLC-based Medical Body Sensor Network (MBSN) channels across different hospital scenarios. The first contribution involves implementing a Q-learning-driven adaptive modulation algorithm capable of maintaining target symbol error rates (SER) in real time without requiring prior environmental data. The second component involves designing a Long Short-Term Memory (LSTM) model to estimate path loss and Root Mean Square (RMS) delay spread under time-varying hospital conditions. The third contribution presents a comprehensive ML-based position estimation framework that evaluates six different algorithms—Linear Regression, Support Vector Regression, K-Nearest Neighbors, Multilayer Perceptron (MLP), LSTM, and Gated Recurrent Units—for accurate patient localization. To date, this appears to be the first study that integrates ray-traced Channel Impulse Response (CIR) modeling with ML-driven analysis in medical environments. Simulation findings indicate that the Q-learning model reliably meets SER targets, with spectral efficiency (SE) performing close to optimal at near-threshold conditions. Additionally, the LSTM-based predictions reveal that in the Intensive Care Unit (ICU) scenario, the sensor at position D1 produces the largest Root Mean Square Error (RMSE) for both path loss (1.6797 dB) and RMS delay spread (1.0567 ns). Conversely, in the Family-Type Patient Room (FTPR), sensor D3 yields the highest RMSE for path loss (1.0652 dB) and delay spread (0.7657 ns), confirming strong predictive performance under realistic operational conditions. For position estimation, MLP emerges as the optimal architecture, achieving sub-meter accuracy of 58.6 cm for combined D1-D2-D3 sensor configurations in FTPR, with individual sensors yielding 63.5 cm (D1), 75.0 cm (D2), and 73.1 cm (D3), while in the more complex ICU environment, MLP maintains acceptable precision of 217.1 cm for D1-D2-D3, with paired configurations achieving 202.1 cm (D1-D2) and 216.3 cm (D1-D3), all while offering 35-48% reduction in computational requirements and 37-89% faster hyperparameter optimization compared to sequential models, making it the most practical solution for real-time patient tracking in healthcare facilities.
Benzer Tezler
- Improving aircraft engine maintenance effectiveness and reliability using intelligent based health monitoring
Akıllı durum izleme stratejilerini kullanarak uçak motor bakım etkinliği ve güvenilirliğinin iyileştirirlmesi
ŞEREF DEMİRCİ
Doktora
İngilizce
2009
Uçak Mühendisliğiİstanbul Teknik ÜniversitesiHavacılık ve Uzay Mühendisliği Ana Bilim Dalı
PROF. DR. CİNGİZ HACIYEV
- An efficient intelligent UAV for human action monitoring in smart cities environment
Akıllı şehirler ortamında insan eylem izleme için verimli bir akıllı İHA
NASHWAN ADNAN OTHMAN
Doktora
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. İLHAN AYDIN
- İnsan sağlığı takibi için giyilebilir sensör verilerinin çok kipli ve füzyon tabanlı analizi
Multimodal and fusion based analysis of wearable sensor data for human health monitoring
GÖKHAN MEMİŞ
Doktora
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBaşkent ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MUSTAFA SERT
- Medium access control layer performance issues in wireless sensor networks
Telsiz algılayıcı ağlarda ortam erişimi kontrol katmanı başarım konuları
İLKER SEYFETTİN DEMİRKOL
Doktora
İngilizce
2008
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi ÜniversitesiBilgisayar Mühendisliği Bölümü
PROF. CEM ERSOY
- Dinamik ortamlarda özdeş olmayan kablosuz algılayıcı ağları için haberleşme protokolü tasarımı
Communication protocol design with non-identical wireless sensor networks in dynamic environments
DENİZ DEMİRTAŞ
Yüksek Lisans
Türkçe
2020
Elektrik ve Elektronik MühendisliğiYıldız Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SERKAN KURT