Geri Dön

Çok değişkenli verilerde ayrımsama sorunu ve lojistik regresyon analizi

Başlık çevirisi mevcut değil.

  1. Tez No: 12596
  2. Yazar: GÜLAY BAŞARIR
  3. Danışmanlar: DOÇ.DR. HÜSEYİN TATLIDİL
  4. Tez Türü: Doktora
  5. Konular: İstatistik, Statistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1990
  8. Dil: Türkçe
  9. Üniversite: Hacettepe Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: İstatistik Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 145

Özet

Lastly it has been emphasized that logistic regression analy sis gives good results for data a e 1 3 which deoands on concrete measurements n hile it is insufficient for social applications.

Özet (Çeviri)

IV SUMMARY In this study, the purpose is, in the case of survey sampling, to find the best model that will allocate obser vations to the groups existing in the data. Since survey sampling data generally contain discrete variables, the normality assumption will not be satisfied and logistic regression analysis is used as an alternative to discri minant analysis. In the First Section, discrimination problem in analysing the multivariate data and the purpose of the study have been pointed out. In the Second Section, dichotomous and polytomous logistic regression analysis, estimation techniques, residual diag nostics and comparison of logistic and discriminant analysis have been examined. In the Third Section, two applications of logistic regres sion analysis, to cardiologic and to student election exam data have been examined and results have been sum marized. In the first application, it has been seen that, multiple group logistic model with main effects which has been fitted to cardiologic data is preferred to two group logistic models for the purpose of estimation and gives better discrimination than discriminant function. In the second application, it has been mentioned that, logistic model is not suitable for student election exam data and this insufficiency is due to the data set. In the last Section, depending on the results, it has been pointed out that, despite multiple group logistic models don't have better discrimination power, they should be preferred to Begg and Gray's individualized logistic mo dels approximation for the purpose of estimation. On the other hand it has been seen that since the assumptions are not satisfied because of discrete variables, discri minant analysis doesn't have sufficient discrimination power.Lastly it has been emphasized that logistic regression analy sis gives good results for data a e 1 3 which deoands on concrete measurements n hile it is insufficient for social applications.

Benzer Tezler

  1. Embedded information content in bonus and rights issue announcements for selected stock exchange markets

    Seçilmiş hisse senedi piyasaları için bedelsiz ve bedelli sermaye artırım duyurularındaki saklı bilgi içeriği

    MURAT IŞIKER

    Doktora

    İngilizce

    İngilizce

    2021

    Maliyeİstanbul Teknik Üniversitesi

    İşletme Ana Bilim Dalı

    PROF. DR. OKTAY TAŞ

  2. Evaluation of grid based precipitation products over the Mediterranean region in Turkey

    Grid tabanlı yağış ürünlerinin Türkiye'de Akdeniz bölgesi için değerlendirilmesi

    ENES HİŞAM

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    PROF. DR. DURSUN ZAFER ŞEKER

    DOÇ. DR. ALI DANANDEH MEHR

  3. Ortaokul matematik başarısını etkileyen faktörlerin belirlenmesi ve iyileştirilmesine yönelik öğrenci, öğretmen ve veli görüşlerinin incelenmesi

    Determining the factors affecting secondary school mathematics achievement and examining the opinions of students, teachers and parents on improving these factors

    BEYZA YIRTAN ÜNAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Eğitim ve ÖğretimGazi Üniversitesi

    Eğitim Bilimleri Ana Bilim Dalı

    DOÇ. DR. HALİME ŞENAY ŞEN

  4. A novel online approach to detect DDoS attacks using mahalanobis distance and Kernel-based learning

    Mahalanobis uzaklığı ve Kernel tabanlı öğrenme kullanılarak DDoS saldırılarını tespit etmek için özgün ve çevrimiçi bir yaklaşım

    SALVA DANESHGADEH ÇAKMAKÇI

    Doktora

    İngilizce

    İngilizce

    2019

    Bilim ve TeknolojiOrta Doğu Teknik Üniversitesi

    Bilişim Sistemleri Ana Bilim Dalı

    PROF. DR. NAZİFE BAYKAL

    DOÇ. DR. THOMAS KEMMERİCH