Çok değişkenli verilerde ayrımsama sorunu ve lojistik regresyon analizi
Başlık çevirisi mevcut değil.
- Tez No: 12596
- Danışmanlar: DOÇ.DR. HÜSEYİN TATLIDİL
- Tez Türü: Doktora
- Konular: İstatistik, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1990
- Dil: Türkçe
- Üniversite: Hacettepe Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İstatistik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 145
Özet
Lastly it has been emphasized that logistic regression analy sis gives good results for data a e 1 3 which deoands on concrete measurements n hile it is insufficient for social applications.
Özet (Çeviri)
IV SUMMARY In this study, the purpose is, in the case of survey sampling, to find the best model that will allocate obser vations to the groups existing in the data. Since survey sampling data generally contain discrete variables, the normality assumption will not be satisfied and logistic regression analysis is used as an alternative to discri minant analysis. In the First Section, discrimination problem in analysing the multivariate data and the purpose of the study have been pointed out. In the Second Section, dichotomous and polytomous logistic regression analysis, estimation techniques, residual diag nostics and comparison of logistic and discriminant analysis have been examined. In the Third Section, two applications of logistic regres sion analysis, to cardiologic and to student election exam data have been examined and results have been sum marized. In the first application, it has been seen that, multiple group logistic model with main effects which has been fitted to cardiologic data is preferred to two group logistic models for the purpose of estimation and gives better discrimination than discriminant function. In the second application, it has been mentioned that, logistic model is not suitable for student election exam data and this insufficiency is due to the data set. In the last Section, depending on the results, it has been pointed out that, despite multiple group logistic models don't have better discrimination power, they should be preferred to Begg and Gray's individualized logistic mo dels approximation for the purpose of estimation. On the other hand it has been seen that since the assumptions are not satisfied because of discrete variables, discri minant analysis doesn't have sufficient discrimination power.Lastly it has been emphasized that logistic regression analy sis gives good results for data a e 1 3 which deoands on concrete measurements n hile it is insufficient for social applications.
Benzer Tezler
- Embedded information content in bonus and rights issue announcements for selected stock exchange markets
Seçilmiş hisse senedi piyasaları için bedelsiz ve bedelli sermaye artırım duyurularındaki saklı bilgi içeriği
MURAT IŞIKER
- Evaluation of grid based precipitation products over the Mediterranean region in Turkey
Grid tabanlı yağış ürünlerinin Türkiye'de Akdeniz bölgesi için değerlendirilmesi
ENES HİŞAM
Yüksek Lisans
İngilizce
2022
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. DURSUN ZAFER ŞEKER
DOÇ. DR. ALI DANANDEH MEHR
- Ortaokul matematik başarısını etkileyen faktörlerin belirlenmesi ve iyileştirilmesine yönelik öğrenci, öğretmen ve veli görüşlerinin incelenmesi
Determining the factors affecting secondary school mathematics achievement and examining the opinions of students, teachers and parents on improving these factors
BEYZA YIRTAN ÜNAL
Yüksek Lisans
Türkçe
2024
Eğitim ve ÖğretimGazi ÜniversitesiEğitim Bilimleri Ana Bilim Dalı
DOÇ. DR. HALİME ŞENAY ŞEN
- Lojistik regresyon yöntemi ile angina pektoris tanısına çeşitli ölçütlerin katkısının irdelenmesi
Başlık çevirisi yok
VEYİS TAŞKIN
- A novel online approach to detect DDoS attacks using mahalanobis distance and Kernel-based learning
Mahalanobis uzaklığı ve Kernel tabanlı öğrenme kullanılarak DDoS saldırılarını tespit etmek için özgün ve çevrimiçi bir yaklaşım
SALVA DANESHGADEH ÇAKMAKÇI
Doktora
İngilizce
2019
Bilim ve TeknolojiOrta Doğu Teknik ÜniversitesiBilişim Sistemleri Ana Bilim Dalı
PROF. DR. NAZİFE BAYKAL
DOÇ. DR. THOMAS KEMMERİCH