Genelleştirilmiş regresyon yapay sinir ağının su kaynakları mühendisliğinde kullanımı
The use of generalized regression neural network in water resources engineering
- Tez No: 172160
- Danışmanlar: DOÇ.DR. KEREM CIĞIZOĞLU
- Tez Türü: Yüksek Lisans
- Konular: İnşaat Mühendisliği, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2006
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 92
Özet
ÖZET Bu çalışmada yeni bir yapay sinir ağı metodu olan Genelleştirilmiş Regresyon Yapay Sinir Ağı'nın, ulusal ve uluslararası toplam 6 havza genelinde günlük sürekli akım, kurak devreli günlük akım, aylık akım, yeraltı suyu, günlük yağış-akış ve günlük akım-askı malzemesi verisine uygulaması yapılmıştır. Çalışma sonuçlan, geleneksel yapay sinir ağı metodları olan ileri Beslemeli Geriye Yayılım Sinir Ağı ve Radyal Tabanlı Yapay Sinir Ağı ile karşılaştırılmıştır. Performans karşılaştırma kriterleri olarak, test süresi için elde edilen verinin ortalama kare hatası ve determinasyon katsayısı değerleri kullanılmıştır. Genelleştirilmiş Regresyon Yapay Sinir Ağı metodu genel olarak başarılı tahmin sonuçları vermiş ve diğer iki yapay sinir ağı metoduna kıyasla bazen daha iyi performans değerlendirme kriter değerlerine ulaşmıştır. Sonuç olarak, yapılan çalışmada GRYSA, standart İBGYSA ve RTYSA metodlarına güvenilir bir alternatif metod olduğunu göstermiştir. xiii
Özet (Çeviri)
THE USE OF GENERALIZED REGRESSION NEURAL NETWORK IN WATER RESOURCES ENGINEERING SUMMARY In this study, Generalized Regression Neural Network, which is a new artificial neural network method, is applied to daily continuous river flow series, daily intermittent river flow series, monthly river flow series, ground water level series, daily rainfall and daily river flow series, and daily river flow and daily suspended sediment data of 6 national and international hydrologic regions. Estimation results are compared with the Feed Forward Back Propagation and Radial Basis Functions which are conventional artificial neural network methods. Mean squared error and coefficient of determination are used as the performance comparison criteria. Generalized Regression Neural Network method, generally provided successful estimation results and sometimes reached better performance evaluation criteria values when compared to the other two artificial neural network methods. In conclusion, this study showed GRNN to be a reliable alternative to the standard FFBP and RBF. XIV
Benzer Tezler
- Medikal teşhiste GRNN kullanımı ve devre bloklarının tasarımı
GRNN usage for medical diagnosis and design circuit blocks
REVNA ACAR
Yüksek Lisans
Türkçe
2004
Elektrik ve Elektronik MühendisliğiYıldız Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
DOÇ. DR. TÜLAY YILDIRIM
- GRNN ve MLP metotları kullanılarak geri dönen meme kanser tespiti
Recurrence breast cancer detection using general regression neural network and multi layer perceptron
OMAR TAHA AHMED AL-KHALIDI
Yüksek Lisans
Türkçe
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTürk Hava Kurumu ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. MELTEM YILDIRIM İMAMOĞLU
- Predicting performance measures of a multiprocessor architecture by using machine learning methods
Makine öğrenmesi metodları kullanılarak çoklu işlemci mimarisinin performans ölçümlerini tahmin etme
ELRASHEED İSMAİL MOHOMMOUD ZAYİD
Doktora
İngilizce
2012
Elektrik ve Elektronik MühendisliğiÇukurova ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. MEHMET FATİH AKAY
- Gsm sinyal bazlı konum belirleme
Gsm signal based localization
ERCAN DEMİR
Yüksek Lisans
Türkçe
2020
Elektrik ve Elektronik MühendisliğiBatman ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ABDULKERİM ÖZTEKİN
- Derin öğrenme ve büyük veri analitiği yöntemleriKullanarak Covid-19 yayılımının ileriye dönük tahmini
Forecasting the spread of covid-19 using deep learning and big data analytics methods
CYLAS KIGANDA
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
PROF. DR. MUHAMMET ALİ AKCAYOL