Geri Dön

Robot planning based on learned affordances

Öğrenilmiş sağlarlıklara dayalı robot planlaması

  1. Tez No: 201668
  2. Yazar: MAYA ÇAKMAK
  3. Danışmanlar: YRD. DOÇ. DR. EROL ŞAHİN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2007
  8. Dil: İngilizce
  9. Üniversite: Orta Doğu Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 85

Özet

Özet yok.

Özet (Çeviri)

This thesis studies how an autonomous robot can learn affordances from its interactions with the environment and use these affordances in planning. It is based on a new formalization of the concept which proposes that affordances are relations that pertain to the interactions of an agent with its environment. The robot interacts with environments containing different objects by executing its atomic actions and learns the different effects it can create, as well as the invariants of the environments that afford creating that effect with a certain action. This provides the robot with the ability to predict the consequences of its future interactions and to deliberatively plan action sequences to achieve a goal. The study shows that the concept of affordances provides a common framework for studying reactive control, deliberation and adaptation in autonomous robots. It also provides solutions to the major problems in robot planning, by grounding the planning operators in the low-level interactions of the robot. 1

Benzer Tezler

  1. Bidirectional multi-step prediction with affordances

    Sağlarlıklar ile çift yönlü çok adımlı tahmin

    UTKU BOZDOĞAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. EMRE UĞUR

  2. Makine öğrenme algoritmalarıyla hatalı ürün tahmini

    Prediction of defective product with machine learning algorithms

    ENES ŞANLITÜRK

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Bilim ve Teknolojiİstanbul Teknik Üniversitesi

    İşletme Mühendisliği Ana Bilim Dalı

    PROF. DR. FERHAN ÇEBİ

  3. Reshaping human intentions by autonomous sociable robot moves through intention transients generated by elastic networks considering human emotions

    Elastik ağları kullanarak, insan duygularına göre üretilen geçici niyet rotalarını izleyen otonom sosyal robotların insan niyetlerini şekillendirmesi

    ORHAN CAN GÖRÜR

    Yüksek Lisans

    İngilizce

    İngilizce

    2014

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. AYDAN MÜŞERREF ERKMEN

  4. Bilişsel robotlar için öğrenme güdümlü sembolik planlama

    Learning guided symbolic planning for cognitive robots

    PETEK YILDIZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. SANEM SARIEL TALAY

  5. Adaptive learning of symbolic numerical constraints in the real-world

    Sembolik sayısal kısıtların gerçek dünyada uyarlanır ögrenilmesi

    GÖKHAN SOLAK

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SANEM SARIEL