Veri madenciliğinde market sepet analizi ve birliktelik kurallarının belirlenmesi
Market basket analysis in data mining and finding association rules
- Tez No: 213549
- Danışmanlar: YRD. DOÇ. DR. SONGÜL ALBAYRAK
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Veri madenciliği, Market sepet analizi, Birliktelik kuralları, Birliktelik kural madenciliği algoritmaları, Apriori algoritması, FP-Growth algoritması, Data mining, Market-basket analysis, Association rules, Association rule mining algorithms, Apriori algorithm, FP-Growth algorithm
- Yıl: 2008
- Dil: Türkçe
- Üniversite: Yıldız Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Bölümü
- Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Sayfa Sayısı: 112
Özet
Günümüzde teknoloji sayesinde çok büyük miktarda veri elde edilip saklanabilmektedir. Ancak bu büyük miktardaki verilerden gözle görülemeyecek, elle analiz edilmesi zor bilgilerin gelişen bilgisayar teknolojisi ve bilgisayar programları ile otomatik olarak analiz edilmesinin gerekliliği ortaya çıkmaktadır. Verikümelerinden örüntülerin, eğilimlerin ve anormalliklerin bulunarak basit modeller şeklinde özetlenmesi, bilgi çağındaki büyük uğraşıların başında gelir. Veri madenciliği, büyük miktardaki mevcut veri içinden anlamlı, potansiyel olarak kullanışlı, gelecekle ilgili tahmin yapılmasını sağlayan bağıntı ve kuralların bilgisayar programları kullanarak bulunmasıdır. Birçok sektörde kullanımı giderek yaygınlaşan veri madenciliğinin uygulama alanlarından biri de süpermarketlerdeki müşteri, ürün ve satış bilgilerinden yararlanarak ilişki ve kuralların elde edildiği market sepet analizidir. Market sepet analizinde ürünlerin birbiriyle olan satış ilişkilerinin elde edilmesi ve veri madenciliği konularından biri olan birliktelik kurallarının çıkarılması, şirketlerin kârını arttırıcı etkenlerdir. Birliktelik kuralları, satış hareket verileri içinde birlikte hareket eden nesnelerin ve nesneler arasındaki bağıntıların keşfedilerek geleceğe yönelik tahminlerin üretilmesini sağlar. Bu kuralların elde edilebilmesi için 90'lı yılların başından itibaren birçok algoritma geliştirilmiştir. Bu algoritmaların birbirine göre farklı koşullar altında üstünlükleri ve farklı çalışma yöntemleri mevcuttur. Veritabanının taranması, birleştirme, budama yöntemlerinin uygulanması ve minimum destek değeri yardımı ile nesneler arasındaki birliktelik ilişkilerinin bulunması, algoritmaların genel mantığını teşkil eder.Bu tez çalışmasında, veri madenciliği ile ilgili kavramlar ve özellikle market sepet analizinde kullanmak üzere birliktelik kuralları üreten temel algoritmalar detaylı bir şekilde ele alınmış ve birbiriyle karşılaştırılmıştır. Ayrıca, örnek veri setlerinden iki farklı algoritma ile birliktelik kurallarını bulan bir uygulama geliştirilmiştir.
Özet (Çeviri)
Today, large amounts of data can be collected and stored by using technology. However, there is a necessity of automatic analysis using computer technology and computer programmes which is developing day by day in order to analyze the data, that is difficult to be analyzed by manuel and can not be seen. Making summaries in the simple way by finding patterns, tendencies, anormalities from the database is one the most common thing in the information age. Data mining is the process of finding the rules and the correlations among the large amounts of data by the computer programmes, which are understandable, potentially useful and provide predictions about the future. The utilization of data mining in a wide selection of fields is increasing. One of the areas is the market-basket analysis that is to have the rules and associations from the data about customer, products and sales. In this analysis, gathering the association rules-one of the subjects in the data mining- and having the sales relationships between the products are two factors of increasing rate of profit in the companies. Association rules provide predictions about the future by discovering relations between the objects which act together in the transactional sales data and the objects. Lots of algorithms has been developed since the beginnings of 1990?s. These algorithms have different working methods and different superiorities on each other in the different conditions. The common logic of these algorithms is that passing over the database, combining, pruning and finding the association rules between the items by using the minimum support threshold.In this thesis, concepts about the data mining and basic algorithms especially using in the market-basket analysis to produce the association rules are examined in details and compared with each other. Also, an application is developed to find association rules from sample datasets by using two different algorithms.
Benzer Tezler
- Pazar sepeti analizi ile birliktelik kurallarının belirlenmesi: Perakende sektöründe Covid-19 etkisi
Determination of association rules with market basket analysis: The impact of Covid-19 on the retail industry
EZGİ ALANLAR
Yüksek Lisans
Türkçe
2021
Endüstri ve Endüstri MühendisliğiKarabük ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. FİLİZ ERSÖZ
- Apriori algoritması ile müşteri bazlı market sepet analizi ve ürün satış tahmini
Customer based market basket analysis with apriori algorithm and product sales forecast
FURKAN ÖZTEMİZ
Yüksek Lisans
Türkçe
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. SERDAR ETHEM HAMAMCI
- Implementation of some medical data in Apriori algorithm
Apriori algoritmasının bazı tıbbı verilere uygulanması
FAWAD SADIQMAL
Yüksek Lisans
İngilizce
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. NILÜFER YURTAY
- Esnek raporlama aracı ve iş zekası uygulamaları ile bütünleştirilmesi
Flexible reporting tool and integration with business intelligence applications
ALİ SERCAN YILMAZ
Yüksek Lisans
Türkçe
2010
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEge ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. VECDİ AYTAÇ
- Applicatıon of data mining in customer relationship management market basket analysis in a retailer store
Müşteri ilişkileri yönetiminde veri madenciliği uygulaması : Bir perakende mağazasında market sepet analizi
MİNE DURDU
Yüksek Lisans
İngilizce
2012
Endüstri ve Endüstri MühendisliğiDokuz Eylül ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. HASAN SELİM