Geri Dön

Orta Karadeniz'de kıyı-yapı etkileşimi

The Effects of structures on shoreline at middle Black Sea

  1. Tez No: 21801
  2. Yazar: SİBEL TÜRKER
  3. Danışmanlar: PROF. DR. NECATİ AĞIRALİOĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: İnşaat Mühendisliği, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1992
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 85

Özet

ÖZET Bu çalışmada, kıyı çizgisi boyunca katı madde ha reketinin önemi üzerinde durulmuştur. Ordu! da yapılmış bir mendirek" gözönüne alınarak, kıyı şekillerinin değişi mi incelenmiştir. Çalışmanın birinci bölümünde katı madde hareketine etki eden tabiat olayları genel olarak anlatılmıştır. Ayrıca çalışmanın amacı hakkında bilgi verilmiştir. İkinci bölümde, kıyı boyunca taşınan katı madde miktarı, katı madde dengesi ve bu konu hakkında yapılması gereken mühendislik çalışmaları ayrıntılı olarak anlatıl mıştır. Kıyı boyunca taşınan katı madde miktarı hesabında kullanılan metodlar ve bu miktara etki eden işlemlerin önemi belirtilmiştir. üçüncü bölümde, kullanılan hesap metodu hakkında bilgi verilmiştir. Dördüncü bölümde ise Ordu'da yapılmış bir mendire ğin kıyı çizgisine etkileri hesaplanmış ve kıyı çizgisi değişimleri grafikle gösterilmiştir. Toplam katı madde miktarı Enerji Akışı Metodu kullanılarak bulunmuştur. Yıllara göre kıyı çizgisi değişimleri ise Bijker Metodu ile hesaplanmıştır. Beşinci bölüm, daha önce yapılan çalışmalarla, bu çalışmanın karşılaştırılmasını içermektedir. Altıncı bölümde sonuçlar verilmiştir. v

Özet (Çeviri)

SUMMARY THE EFFECTS OF STRUCTURES ON SHORELINE AT MIDDLE BLACK SEA This study examines longshore sediment transport. For this, examination data is needed; wave measuraments, whether there are shore structures or not increases at sea level, and the actives that effect the budget of sediments as inlet and lagoon in the site. In the first chapter; the natural events which effects the movement at sediment were explained in general in addition, information has been given about the purpose of study and the disadvantages of these actives. In the second chapter; definitions related the longshore transport rate and informations that are used are explained. Definitions that are explained at the sediment transport are gross longshore transport rate, Qg and net longshore transport rate Qn. If littoral drift transported to the right is shown by Qrt and littoral drift transported to the left is shown.. by Qlt/ Qg and Qn will be; Qg=Qrt+Qit Qn=Qrt-Qlt The quantities Qrf Qlt' Qn and Qg have engineering uses: for example, Qg is used to predict shoaling rates in uncontrolled inlets. Qn is used for design of protected inlets and for design of jetties and impoundment basins behind weir jetties. In addition, Qg provides an upper limit over other quantities. Occasionally, the ratio Qlt Y = Qrt is known, rather than the separate values Q]_-t and Qrt' Than Qg is related to Qn in terms of y by Qg = Qn (1 + Y) (1-Y) ViAnother representation of longshore transport rate is the immersed weight rate I]_ which is given in units at force per unit time. The conversation from Q to I]_ is; Il= (ys-y) g.a*.Q where; s : mass density of sand p : mass density of water g : acceleration of gravity a1 : volume solids/total volume There are four basic methods to use for the prediction of longshore transport rate. 1- First, method is to adapt the best known rate from a nearby site, with modifications based on local conditions. 2- If rates from nearby site are unknown, the next best way to predict transport rates at a site is to compute them from data showing historical changes in the topography of the littoral zone. 3- If neither method 1 nor method 2 is practical, then it is accepted practice to use either measured or calculated wave conditions to compute a longshore component of“wave energy flux”which is related through on emprical curve to longshore transport rate. 4- An emprical method is available to estimate gross longshore transport rate prom mean annual nearshore breaker height. The gross rate, so obtained, can be used as an upper limit on net longshore transport rate. Method 1 depends largely on engineering judgment and local data. Metod 2 is an application of historical data, which gives usable answers if the basic data are reliable and available at reasonable cost and the inter pretation is based on a through knowledge of the locality. By choosing only a few representative wave conditions Method 3 can usually supply an answer with less work than method 2, but with corres pondingly less certainty. Because calculation of wave statistics in method 3 follows and established routine, it is often easier to use than researching the hydrographic records and computing the changes necessary for method 2. Method 4 requires mean nearshore breaker height data. In this study, Energy Flux Method is used. This method is based on the assumption that longshore transport rate Q depends on the longshore compaaent of energy flux in the surf zone. The energy flux per unit lenght of wave vııcrest, or, eguivalently, the rate at which wave energy is transmitted across a plane of unit width perpendicular to the direction of wave advance is; P = E Cg = £|- H2Cç where, Cg : group velocity H : significant wave height g : acceleration of gravity p : mass density of water The wave crests make an angle, with the shoreline, the energy flux in the direction of wave advance per unit length of beach is 2 P Cosa=P| Cg Cosa and the longshore component is given by P]_=P Cos Sina= ^ H Cg CosaSina 1 or, since CosaSxna= -~ Sin2a Pl = 16 H2cgsin2a The approximation for P]_ at the breaker line is written Plb= if H^CbSin2ab for linear theory, in shallow water, Cg=rC and *lb = if H^CbSin2ab where H, and a are the wave height and direction. However, most wave data are available as significant heights, and coastal engineers are used to dealing with significant heights, therefore; Pls= if Hsb2 Cgb.Sin2ab The value of P]_s computed using significant wave height is approximately twice value of the exact energy flux for sinusoidal wave heights with Rayleigh distribution. In the second chapter-,., additionnaly sediment budget and engineering studies are discussed. The purpose of a sediment budget is to assist the coastal engineer by (1) identifying relevant processes, (2) estimating volume rates required for desing purposes. (3) singling out significant processes for special vmattention, and (4) through balancing sand gains against losses, checking the accuracy and completness of the design budget. Elements of sediment budget are sources and sinks. Usually, sources are identified as positive and sinks as negative in a complete sediment budget, the difference between the sand added by all sources and the sand removed by all sinks should be zero. In the usual case, a sand budget calculation is made to estimate an unknown erasion or deposition rate. This estimated rate will be the difference resulting from equation known sources and sinks. The total budget is shown schematically as follows: Sum of Sources-Sum of Sinks=0, or Sum of Known Sources-Sum of Known S ink s = Unknown Source or Sink Engineering study of littoral processes are; 1- Office study 2- Field study In the third chapter; information was given con cerning the account method that was used. In this method, it is known as Bijker Method, for predicting the variances at the shoreline, movement and continuity equations are needed. If these two equations are solved together; 3x2 3t Here; a= Sx _ S h 0'h Using the initial and boundary conditions, the out ward growth of the coastline at the breakwater, L(t), at x=0 is; i - ' nrr- ir irh In chapter 4“;”the effect of artificial harbour constructed in Ordu to shoreline. By using wave data, annually sediment rate was calculated with below equality. Q=2,03xl06xfxHs5/2xF(ao) where, f: existence percentage Hs: significant wave height f (a0) : a direction term, and P(ao) : (Cosa0)1/4.sin2a IXBy using total sediment, the filling time of outside part of structure is found. The length of part that will be filled up to breaking d©pth; L = L'- (mi-m)hk where, L ' : length of structure to shore verticaly n»]_: 1 / base slope m : 1 / structure slope h^: breaking depth The required time for filling outside part of structure with sediment; L^h tl = 0,785x |^ where, S: longshore transport rate L: length of part that will be filled up to structures breating depth (j) ' : radian value of a^ h: water depth The accumulation that will be occured at the outside part of structure according to years can be calculated. For the times smaller than t^_, the length toward the shoreline vertically;,/4at! i -u2 V - - | e X y = V e -u/tt6 Tr U = a = /4af S 'h where, length parallel to shore from structure For the times greater than tj_, the length to shore vertically, y = 0 L 2 r°° -u2 In the 5tn part; the comparisons of this study with the previous studies were done. In the 6th part; conclusions were given ?>'

Benzer Tezler

  1. Türkiye'de bitki örtüsü değerlerinin değişimi ve meteorolojik parametrelerle ilişkilendirilmesi

    The Variations of normalized difference vegetation index in Turkey and relationship between meteorological parameters

    DENİZ OKÇU

    Yüksek Lisans

    Türkçe

    Türkçe

    1999

    Meteorolojiİstanbul Teknik Üniversitesi

    PROF.DR. ZAFER ASLAN

  2. Önemli zeytin (Olea europaea L.) çeşitlerinin izoenzim polimorfizmleri ve genetik özellikleri

    Isoenzyme polymorphisms and genetic characteristics of important olive (Olea europaea L.) cultivars and types

    SEVDA DÜLGER

    Yüksek Lisans

    Türkçe

    Türkçe

    2004

    ZiraatÇanakkale Onsekiz Mart Üniversitesi

    Bahçe Bitkileri Ana Bilim Dalı

    YRD. DOÇ. DR. MURAT ŞEKER

  3. Şehir coğrafyası yönünden Ordu

    From the city gography point of view Ordu

    AHMET GÜRSOY

    Doktora

    Türkçe

    Türkçe

    1998

    CoğrafyaGazi Üniversitesi

    Coğrafya Ana Bilim Dalı

    PROF. DR. MESUT ELİBÜYÜK

  4. AHP metodu kullanılarak Karadeniz bağlamında deniz güvenliğinin dinamiklerinin belirlenmesi

    Determining the dynamics of marine security in the context of the Black Sea using the AHP method

    ÖZCAN DURUKAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Deniz Bilimleriİstanbul Teknik Üniversitesi

    Denizcilik Çalışmaları Ana Bilim Dalı

    DOÇ. DR. PELİN BOLAT

  5. Ünye ilçesinin doğal miras envanteri

    Natural heritage inventory of Ünye district

    ŞEVKİ KOÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    CoğrafyaKarabük Üniversitesi

    Coğrafya Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ÖZNUR YAZICI