Geri Dön

In silico design of peptides with functionality

Fonksiyonu olan peptidlerin ın sılıco tasarımı

  1. Tez No: 252103
  2. Yazar: BARIŞ EVRİM DEMİRÖZ
  3. Danışmanlar: PROF. DR. CANDAN TAMERLER
  4. Tez Türü: Yüksek Lisans
  5. Konular: Biyoteknoloji, Biotechnology
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2009
  8. Dil: İngilizce
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: İleri Teknolojiler Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 74

Özet

Bu çalışmada fonksiyonları bilinen peptid sekanslarıyla eğitilebilir ve eğitimin ardından kullanıcının sistemi başka peptid sekanslarıyla ilgili fonksiyonu sorgulamasını sağlayan, Karabash adında bir yazılım geliştirilmiştir. Bu sayede bir peptidin ilgili fonksiyonu ne ölçüde gerçekleştirdiğinin öngörüsü yapılmaktadır. Başka bir deyişle Karabash belirli bir fonksiyona sahip ya da sahip olmayan peptidlerin tasarımına olanak verir.Karabash, kısmi bağlı ileri beslemeli yapay sinir ağı oluşturur; sinir ağının boyutu (içerdiği nöron sayısı) eğitim setindeki en uzun peptid sekansının uzunluğuna gore belirlenir. Son olarak oluşturulmuş yapay sinir ağı eğitilir ve sorgulamaya hazır hale getirilir.Bir tane grafiksel ve bir tane de komut satırı olmak üzere, Karabash için iki ayrı kullanıcı arayüzü hazırlanmış ve geliştirilmiştir. Karabash'ın ürettiği sonuçları değerlendirmek ve puantaj matrisleri kullanılan çalışmanın sonuçlarıyla kıyaslamak için özel kullanıcı arabirimleri geliştirilmiştir. Bu özel kullanıcı arabirimleri Karabash'ın varsayılan dağıtımına dahil edilmemiştir.Karabash ve puantaj matrisleri kullanan sisteme 5000 tane rasgele üretilmiş peptid sekansı beslenmiş ve iki sistemin de çıktıları karşılaştırılmıştır.Karabash, deneysel olarak işlerliği kontrol edilmiş kuartza 4 tane zayıf bağlanan ve 6 tane güçlü bağlanan peptidle test edilmiştir.Sonuç olarak, Karabash puantaj matrisleri kullanan sistem ile önemli ölçüde benzer sonuçlar üretmiştir. Ayrıca Karabash deneysel olarak işlerliği bilinen peptidlerin güçlü ya da zayıf bağlanmasını doğru olarak öngörmüştür.

Özet (Çeviri)

A software system, called Karabash, was developed which allows user to train the system with peptide sequences with known functionality and also allows user to interrogate the system using peptide sequences regarding the trained function, therefore predicting peptide effectiveness for a particular functionality. In other words, Karabash allows the design of new peptide sequences with/without particular functionality.Karabash creates a partially connected feedforward artificial neural network, the size of the neural network is determined according to the length of the peptide sequences in training data. Afterwards, this partially connected artificial neural network is trained and gets ready for interrogation.Two user interfaces were prepared and developed for Karabash, one graphical and one command line. Custom user interfaces were also developed to evaluate and compare results of Karabash with the other system that is using scoring matrices to predict peptide functionality. These custom user interfaces are not included in Karabash default distribution.5000 randomly generated peptides were fed to Karabash and the system using scoring matrices and the outputs of two systems were compared.Karabash was tested for 4 weak and 6 strong quartz binding peptide sequences which are known to be weak/strong by experimental validation.As a result, Karabash produced significantly similar output with the system that is using scoring matrices. Also Karabash was tested against experimentally validated weak/strong quartz binders and predicted the binding characteristics of these peptides right.

Benzer Tezler

  1. Moleküler imprint sol-jel polimer kaplı kuantum noktaların sentezi ve optik sensör uygulaması

    Synthesis of quantum dots coated with molecularly imprinted sol-gel polymer for application of optical sensor

    TANER ARSLAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Kimyaİstanbul Teknik Üniversitesi

    Kimya Ana Bilim Dalı

    PROF. DR. ORHAN GÜNEY

  2. Constructing peptide (GEPI)-protein molecular hybrids by using genetic engineering methods for materials and medical applications.

    Malzeme ve medikal uygulamalar için gen mühendisliği yoluyla peptid (GEPI)-protein hibritlerin oluşması.

    DENİZ ŞAHİN

    Doktora

    İngilizce

    İngilizce

    2011

    Biyomühendislikİstanbul Teknik Üniversitesi

    İleri Teknolojiler Ana Bilim Dalı

    PROF. DR. CANDAN TAMERLER

    PROF. DR. MEHMET SARIKAYA

  3. Langmuir Blodgett assembly of peptide functionalized nanoparticles onto silicatebased surfaces and their characterization

    Peptit ile fonksiyonlandırılmış nanoparçacıkların Langmuir Blodgett yöntemi ile silika tabanlı yüzey üzerine kaplanması ve karakterizasyonu

    NUR MUSTAFAOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2012

    Biyolojiİstanbul Teknik Üniversitesi

    Nanobilim ve Nanomühendislik Ana Bilim Dalı

    PROF. DR. MUSTAFA ÜRGEN

  4. A synthetic biology approach for nanomaterials design, synthesis and functionalization

    Nanomalzemelerin tasarımı, bireşimi ve işlevlendirilmesine bir bireşimsel biyoloji yaklaşımı

    TOLGA TARKAN ÖLMEZ

    Doktora

    İngilizce

    İngilizce

    2017

    Biyoteknolojiİhsan Doğramacı Bilkent Üniversitesi

    Malzeme Bilimi ve Nanoteknoloji Ana Bilim Dalı

    YRD. DOÇ. DR. URARTU ÖZGÜR ŞAFAK ŞEKER

  5. Biomedical applications of peptide nanostructures

    Peptit nanoyapıların biyomedikal uygulamaları

    MELİS ŞARDAN EKİZ

    Doktora

    İngilizce

    İngilizce

    2016

    Biyokimyaİhsan Doğramacı Bilkent Üniversitesi

    Malzeme Bilimi ve Nanoteknoloji Ana Bilim Dalı

    DOÇ. DR. MUSTAFA ÖZGÜR GÜLER