Geri Dön

Destek vektörü makineleri tabanlı hata bulma, tanıma ve hata toleranslı kontrol yöntemleri

Support vector machines based fault detection, diagnosis and fault tolerant control methods

  1. Tez No: 293876
  2. Yazar: RANA ORTAÇ KABAOĞLU
  3. Danışmanlar: PROF. DR. İBRAHİM EKSİN
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2010
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Kontrol ve Otomasyon Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 122

Özet

Bu tezde, çeşitli süreçler için destek vektörü makineleri tabanlı üç ayrı akıllı hata bulma, tanıma ve hata toleranslı kontrol yaklaşımı sunulmuştur. İlk yöntem bir hata bulma ve tanıma yaklaşımıdır. Destek vektörü bağlanımı hata bulma işleminde, destek vektörü sınıflandırması ise hata tanıma işleminde kullanılmıştır. Bir çıkış işareti, oluşturulan güvenli bölgenin destek vektörü bağlanım makineleri ile modellenen alt veya üst sınırını aşarsa bir hata tespit edilir. Destek vektörü ile çoklu sınıflandırma yöntemlerinden biri olan bire-karşı-diğerleri, sistemde tespit edilen hatayı sınıflandırır. İkinci yöntem, yeniden yapılandırma mekanizması `çevrim-içi kontrolör seçen' türde olan bir aktif hata toleranslı kontrol yöntemidir. Destek vektörü ile çoklu sınıflandırma yöntemlerinden biri olan bire-karşı-diğerleri, hatayı sınıflandırır. Hata tespit edildiğinde sistemin kapalı çevrim başarımının devamını sağlamak için uygun olan kontrolör çevrim-içi seçilir. Eğitim aşamasında kullanılan PID kontrolörlerinin parametreleri genetik algoritmayla çevrim-dışı belirlenmiştir. Üçüncü yöntem, yeniden yapılandırma mekanizması `çevrim-içi kontrolör hesaplayan' türde olan bir aktif hata toleranslı kontrol yöntemidir. Sunulan bu yöntemde yeniden yapılandırma ve hata tanıma birimleri birbirlerinden bağımsız çalışırlar. Üç tane destek vektörü bağlanım makinesi sistemden gelen veriyi eşzamanlı değerlendirerek PID kontrolörün katsayılarını çevrim-içi üretirler. Hatanın türünün tespit edilmesi için destek vektörü bağlanım makinelerini kullanan benzer bir işlem gerçekleştirilir.

Özet (Çeviri)

In this thesis, three independent, intelligent fault detection, diagnosis and fault tolerant control approaches for various processes based on support vector machines are presented. The first method is a fault detection and diagnosis approach. Support vector regression has been used in fault detection process and support vector classification has been used in diagnosis process. A fault is detected when an output signal exceeds the upper or lower bounds of the generated confidence band that are modelled by two support vector regression machines. A support vector multi-classification method, one-against-all, has been used to classify the occurring fault in system. The second method is an active fault tolerant control method including on-line controller selection type reconfiguration mechanism. A support vector multi-classification method, one-against-all, has been used to classify the occurring fault. When a fault is detected a suitable controller has been selected in an on-line manner to maintain closed-loop performance of the system. In training phase, PID controllers have been used and their parameters have been obtained in an off-line manner by genetic algorithms. The third method is an active fault tolerant control method including on-line controller calculation type reconfiguration mechanism. In the presented method, reconfiguration mechanism and diagnosis unit work independently. Three of support vector regression machines are simultaneously evaluated the data sent by the system, and produce coefficients of the PID controller in an on-line manner. In order to determine the type of fault, a similar process is exploited using one support vector regression machine.

Benzer Tezler

  1. Fake news classification using machine learning and deep learning approaches

    Makine öğrenimi ve derin öğrenme yaklaşımlarını kullanarak sahte haber sınıflandırması

    SAJA ABDULHALEEM MAHMOOD AL-OBAIDI

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ TUBA ÇAĞLIKANTAR

  2. Diagnosis of thyroid disease via support vector machines

    Destek vektör makineleri ile tiroid hastalıkları tanısı

    NURİ KORHAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. GÜLAY ÖKE GÜNEL

  3. Optimize edilmiş özdevimli öğrenme metotları kullanılarak FMCW radarı ile aktif ve pasif hareketli hedeflerin sınıflandırılması

    Active and passive moving targets classification by using optimized machine learning methods via FMCW radar

    AHMET TUĞHAN BALKAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Elektrik ve Elektronik MühendisliğiAnkara Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ÖKKEŞ TOLGA ALTINÖZ

  4. Ekstrasistol kalp seslerinin destek vektör makineleriyle sınıflandırılmasına yönelik android uygulaması geliştirilmesi

    Developing android application with support vector machines intended for classification of extra systole heart sounds

    HÜSEYİN COŞKUN

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSüleyman Demirel Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. TUNCAY YİĞİT

  5. Classifier fusion for multimodal correlated classifiers and video annotation

    Bağımlı sınıflandırıcılar ve video işaretleme için sınıflandırıcı birleştirme

    ÜMİT EKMEKCİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ZEHRA ÇATALTEPE