Parallelization study on the clustering technique to mine large datasets
Geniş veri kümelerini işleme amacıyla öbekleme tekniği üzerine paralelleştirme çalışması
- Tez No: 297632
- Danışmanlar: DOÇ. DR. CEM ÖZDOĞAN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2011
- Dil: İngilizce
- Üniversite: Çankaya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 104
Özet
Bu tezde, mesaj geçirme arayüzü (MPI) ve birleşik aygıt mimarisi hesaplaması (CUDA) modelini uygulayarak geliştirilen paralel öbekleme algoritmaları, çok geniş veri kümeleri üzerindeki uygulamaları ile birlikte tanıtılmıştır. WaveCluster, wavelet dönüşümü tabanlı yenilikçi bir öbekleme analizi yaklaşımıdır. Bu yaklaşımın etkinliğine rağmen, çok boyutlu geniş veri kümeleri üzerinde çalıştırıldığında çalışma zamanı fazla olmaktadır. Geliştirilen MPI algoritmasında; yüksek verimlilik değerlerini elde etmek için işlemciler arasındaki haberleşme en az seviyede tutulmuştur. Yapılan deneysel çalışmalarda, MPI algoritması yüksek hızlanma değerleri vermiştir ve ayrıca artan işlemci sayısı ile birlikte doğrusal bir çalışma karakteristiği göstermiştir. WaveCluster yaklaşımı ayrıca grafik işlemci ünitesi (GPU) üzerinde CUDA modeli uygulanarak paralelleştirilmiştir. Geliştirilen CUDA algoritmasında, wavelet dönüşümü ve bağlı parçaları işaretleme algoritmaları geliştirilmiştir. CPU üzerinde sıralı çalışan WaveCluster yaklaşımına kıyasla CUDA algoritmalarında yüksek hızlanma değerleri elde edilmiştir.
Özet (Çeviri)
Parallel clustering algorithm implementations concerning message passing interface (MPI) and compute unified device architecture (CUDA) model with their applications to very large datasets have been presented in the thesis. WaveCluster is a novel clustering approach based on wavelet transforms. Despite it?s novelty, it requires considerable amount of time to collect results for large sizes of multidimensional datasets. In the MPI algorithm; divide and conquer approach has been followed and communication among processors are kept at minimum to achieve high efficiency. Developed parallel WaveCluster algorithm exposes high speedup and scales linearly with the increasing number of processors. Parallel behavior of WaveCluster approach has been also investigated by executing the algorithm on graphical processing unit (GPU). High speedup values have been obtained in the computation of wavelet transform and connected component labeling algorithms in the GPUs with respect to the sequential algorithms running on the CPU.
Benzer Tezler
- İnsan aktivitesi tanımaya yönelik büyük veri setlerinde kümeleme yöntemlerinin bulut üzerinde paralelleştirilmesi
Parallelization of clustering methods for human activity recognition big datasets on cloud
AHMED ABDULRAHMAN M.JAMEL
Doktora
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolErciyes ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. BAHRİYE AKAY
- Demetleme problemi için paralel karınca yaklaşımı
Parallel ant based clustering for clustering problem
ÖZLEM GEMİCİ
Yüksek Lisans
Türkçe
2007
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
Y.DOÇ.DR. ŞİMA ETANER UYAR
- Perinatal dönemdeki psikiyatrik hastalık belirtilerinin yapay zeka tabanlı büyük veri işleme platformu ile belirlenmesi
Detection of psychiatric disease symptoms in the perinatal period with an ai-based big data processing platform
NUR BANU OĞUR
Doktora
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. CELAL ÇEKEN
- Performance assessment of real time radar classification on software-defined radio (SDR) platforms
Yazılım tanımlı radyolar ile gerçek zamanlı radar sınıflandırma başarım analizi
SEÇKİN ÖNCÜ
Yüksek Lisans
İngilizce
2024
Elektrik ve Elektronik MühendisliğiGazi ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. ALİ KARA
- Integrating gene expression, protein interaction and protein domain data to improve gene expression clustering
Gen ifadesi gruplamasını geliştirmek için gen ifadesi, protein etkileşimi ve protein aileleri verilerini bütünleştirme
ALPER TOLGA KOCATAŞ
Yüksek Lisans
İngilizce
2005
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKoç ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. ATTİLA GÜRSOY