Geri Dön

Veri madenciliği algoritmalarını kullanarak öğrenci verilerinden birliktelik kurallarının çıkarılması

Deducing of association rules from students database using data mining algorithms

  1. Tez No: 302517
  2. Yazar: UFUK EKİM
  3. Danışmanlar: YRD. DOÇ. DR. GÜLAY TEZEL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2011
  8. Dil: Türkçe
  9. Üniversite: Selçuk Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 61

Özet

Günümüzde veri tabanları büyük miktarlarda veri depolamaktadır. Bu işlenmemiş, ham verilerden bilgi elde etmek çok zordur. Bilgiye ulaşmak için ise verilerin analiz edilerek, anlaşılabilir veriler haline dönüştürülmesi gerekir.Büyük miktarlardaki verilerin, kullanılan büyük veri tabanlarında bilgisayar programları vasıtasıyla aranarak, bulunan sonuçlar kullanılarak gelecekle ilgili tahmin yapılması işlemlerine veri madenciliği denilmektedir. Geleceğe dair tahmin yapılabilmesi için geçmişe dönüp, geçmişte bu konularla ilgili ne gibi bilgiler olduğunu ve ne gibi uygulamalar yapıldığını görmek gerekir. Günümüzde bu amaçla birçok algoritma ve yazılım geliştirilmiştir. Bu algoritma ve yazılımlar sayesinde, analistlerin işleri oldukça kolaylaşmıştır.Bu tez çalışmasında, halen Selçuk Üniversitesinde kullanılan öğrenci işleri otomasyonundan elde edilen veriler üzerinden, öğrenciler hakkında gelecekle ilgili tahmin yapılabilmesi için gerekli birliktelik kuralları çıkarılmıştır. Bu amaçla, bu tezde apriori algoritması ve karar ağacı algoritması kullanılmıştır. Bu kurallar sayesinde, Selçuk Üniversitesini yeni kazanan bir öğrencinin, üniversitedeki başarısına etki eden faktörler araştırılmıştır.Bu çalışma sonucunda, ailenin eğitim seviyesinin ve gelir düzeyinin öğrencinin başarısında en etkili faktörler olduğu görülmüştür.

Özet (Çeviri)

In this day and time, data bases are storing the data in great amounts. It is so difficult to get information from these raw datum. For reaching information, datum are to be analyzed and transformed into comprehensible datum. The processes, which datum in great amounts are searched in the great data bases by computer programs and the results found provide that we make a prediction about the future, are called as ?data mining?. To be able to see the future and to make a prediction about the future, we should look at the past and should see what sort information about these subjects were present and what sort applications were done in the past. In our day, in these matters, many algorithms and software have been improved. Thanks to these algorithms and software, analysts? works have been gotten easy considerably.In this thesis work, it has been reached necessary information to make future predictions about students by the datum acquiring from the student affairs automation that is still used at Selcuk University. By this information and with this aim, in this thesis, it has been used a priori algorithm and decision tree algorithm, Thanks to these rules, it has been researched the factors that affect the success at the university of a newly-registered student to Selcuk University.At the end of this work, it has been seen that the level of education and income of a family are the most effective factors in the success of a student.

Benzer Tezler

  1. Temel eğitimden ortaöğretime geçiş sınavı kazanımlarının veri madenciliği yöntemleri ile değerlendirilmesi

    Evaluation of acquisitions of the transition from primary education to secondary education exam with data mining methods

    ERTAN CAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    Eğitim ve ÖğretimAfyon Kocatepe Üniversitesi

    İnternet ve Bilişim Teknolojileri Yönetimi Ana Bilim Dalı

    DOÇ. DR. UÇMAN ERGÜN

  2. Akademik başarının makine öğrenmesi yöntemleri ile tahmin edilmesi

    Prediction of academic success by machine learning methods

    ZEYNEP BARUT

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBursa Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ VOLKAN ALTUNTAŞ

  3. Yurtta barınan öğrencilerin ayrılma sebeplerinin veri madenciliği yöntemleriyle analiz edilmesi

    Analyzing the reasons for leaving the students living in the dormitory with data mining methods

    BERRİN DEĞİRMENCİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. OKTAY YILDIZ

  4. SBS sınav sonucu tahmin modeli

    SBS exam result prediction model

    BOTAN ONAT

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAkdeniz Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ALPER BİLGE

  5. Modeling educational data with machine learning methods

    Eğitim verilerinin makine oğrenmesi algoritmaları kullanılarak modellenmesi

    AYŞE İLKNUR DİLEK

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Kültür Üniversitesi

    Matematik ve Bilgisayar Bilimleri Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MEHMET FATİH UÇAR