Hybrid K-means clustering algorithm
Hibrit K-means kümeleme algoritması
- Tez No: 333176
- Danışmanlar: YRD. DOÇ. DR. ZEKİ BOZKUŞ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2013
- Dil: İngilizce
- Üniversite: Kadir Has Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 59
Özet
Geçmişten günümüze kadar olan süreçte veri boyutları günden güne hızla artmaktadır. Veritabanlarında tutulabilen bu verilerin işlenebilirliği artan boyutlardan dolayı dezavantaj olarak görülmektedir. Şirketlerin veritabanlarında bulunan bu bilgiler iyi kullanıldığı halde karlılığı arttırmaya yönelik bir mükemmel bir kaynaktır. Bu kaynakla müşterilerin profillerine göre bir kümeleme yapılabilir, yapılan kümelemelerle ilgili kümedeki müşteriye hitap edecek ürünler sunulabilmektedir. Bu kaynakların hızla incelenebilmesi ve kaynaklardan anlamlı bir bilgi çıkarabilmek için veri madenciliği algoritmalarına ihtiyaç duyulmaktadır. Bu projede K-means kümeleme algoritması hibrit programlama yöntemiyle implemente edilmiştir. Hibrit programlamayla kümeleri oluşturacak verilerin daha kısa sürede gruplanabileceği öne sürülmüştür. Algoritma hibrit programlama yöntemiyle hızlandırılmıştır. Hibriti oluşturan paralel programlamayla program parçacıklarının çoklu işlemciye sahip sistemlere dağıtılması ve işletilmesi, iş parçacıklarının yardımıyla birden fazla sürecin aynı anda yürütülmesi sağlanmıştır. Hibrit algoritma, C dili ile implemente edilmiştir. Var olan paralel K-means kaynak kodları, iş parcacıkları ile hibritleştirilmiştir. Paralelleştirme işlemi için Message Passing Interface kütüphanesi ve POSIX threads kullanılmıştır. Hibritleştirilen K-means algoritması, var olan algoritmayla aynı şartlar altında birden fazla kez çalıştırılarak sonuçlar elde edilmiş ve karşılaştırmalar yapılmıştır. Bu karşılaştırmalar tablolar ve grafiklere aktarılmıştır.
Özet (Çeviri)
From the past up to the present size of the data is rapidly increasing day by day. Growing dimensions of this data can be held in databases is seen as a disadvantage. Companies have seen this information in databases as an excellent resource for increasing profitability. According to this source, the profiles of the customers can be clustering and new products can be presented for cluster customers. So data mining algorithms are needed for rapidly examine these sources of information and obtaining meaningful information from resources.This project has been implemented K-means clustering algorithm with the hybrid programming method. This project suggested that data grouped with hybrid programming takes less time. Algorithm accelerated with hybrid programming method. Parallel programming used to solve K-means problem with using multi- processor and threads used for running operations at the same time. Hybrid version of K-means clustering algorithm was written using the C programming language. Existing parallel K-means source code used thread structure is added. Message Passing Interface library and POSIX threads are used. Hybrid version of K-means algorithm and parallel K-means algorithm are run many times under the same conditions and comparisons were made. These comparisons were transferred to the tables and graphs.
Benzer Tezler
- A study of a hybrid clustering using swarm intelligence techniquesand K-means algorithm
Başlık çevirisi yok
DURDANE KOCAÇOBAN
- Sezgisel yöntemlerle k harmonik ortalama veri kümeleme eniyilemesi
Optimization of k harmonic means clustering with metaheuristics
ALPER ÜNLER
Doktora
Türkçe
2006
Endüstri ve Endüstri MühendisliğiGazi ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF.DR. ZÜLAL GÜNGÖR
- Merkez tabanlı kümeleme algoritmalarının karşılaştırılması
The comparison a center-based clustering algorithms
AYSEL BİLGİN
Yüksek Lisans
Türkçe
2008
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. NEVCİHAN DURU
- Çoklu depolu araç rotalama probleminin hibrid algoritmalar yöntemiyle çözülmesi
Solving multi-depot vehicle routing problems via hybrid algorithms
GÜLŞEN APAK
- Hibrid ve indirgenmiş kümeleme analizi ile Türkiye'deki ilçelerin sosyo-ekonomik özelliklerine göre sınıflandırılması
Classifying the counties of Turkey according to their socio-economic characteristics by hybrid and reduced clustering analysis
GÖKHAN SAYIN
Yüksek Lisans
Türkçe
2010
EkonometriMuğla Üniversitesiİstatistik Ana Bilim Dalı
ÖĞR. GÖR. MEHMET KARAHASAN