Gradyan tabanlı heterojen öznitelik çıkarma yöntemlerine yeni yaklaşımlar
New approachs to gradient based heterogenous feature extraction methods
- Tez No: 341555
- Danışmanlar: YRD. DOÇ. DR. MUHAMMED FATİH TALU
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2013
- Dil: Türkçe
- Üniversite: İnönü Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 91
Özet
Bu tez çalışmasında heterojen öznitelik tanımlayıcıları olarak bilinen Co-occurrence histogram of oriented gradients (CoHOG) ve Co-occurrence Histograms of pairs of Edge orien¬tations and color Differences (CoHED) yöntemlerinin dezavantajlarını ortadan kaldıran yeni bir yöntem önerilmiştir. Daha önce önerilen geleneksel yöntemler kenar yönelimlerinin belirlenmesi için çift açı sunumu (double angle representation) yöntemini kullanmaktadır.Çift açı sunumu yöntemi tanımlayıcı kalitesinde hayati rol oynamaktadır. Bununla beraber, çift açı sunumu yönteminin 3 önemli dezavantajı bulunmaktadır. Bu dezavantajlar reel ve kompleks eksen arasındaki dönüşüm sırasındaki zaman kaybı, gradyan değişimlerini daha az ifade edebilme yeteneği ve matematiksel karmaşıklıktır. Önerilen yöntem (cgCoHOG ve cgCoHED) bahsedilen dezavantajları çift açı yönteminin yerine renkli gradyan (color gradient) yöntemi kullanarak giderebilmektedir. Renkli gradyan yöntemi renk bilgisinin tüm avantajlarını kullanmaktadır ve uygun hesapsal maliyeti ile tutarlı sonuçlar vermektedir.Bu tez çalışmasında önerilen cgCoHOG ve cgCoHED öznitelik tanımlayıcılarının 2 önemli katkısı bulunmaktadır. Birincisi, öznitelik vektör boyutunu artırmadan sınıflandırma sürecinde geleneksel yöntemlerden daha doğru sonuçların elde edilmesini sağlamaktadır. İkinci katkısı ise, bu vektörleri geleneksel yöntemlerden daha kısa sürede elde etmesidir. Bu bahsedilen katkılar önerilen yöntemleri yaya tanıma gibi gerçek zamanlı uygulamalar oldukça kullananılabilir kılmaktadır.Deneysel sonuçlar önerilen yöntemin zaman ve sınıflandırma doğruluğu açısından geleneksel yöntemlerden üstünlüğünü açıkça ortaya koymaktadır.ANAHTAR KELİMELER: CoHOG - CoHED ? Hetererojen Öznitelikler ? Nesne Sınıflandırma
Özet (Çeviri)
In this thesis, we propose a new feature descriptor method, which eliminates the disadvantages of well-known heterogenic feature descriptors such as Co-occurrence histogram of oriented gradients (CoHOG) and Co-occurrence Histograms of pairs of Edge orien¬tations and color Differences (CoHED), which use double angle representation methods to determine edge orientations, which plays vital roles in descriptor quality.Whereas the double angle representation method suffers from some disadvantages such as loss of time due to transformations between real and complex spaces, less mapping ability of gradient changes and mathematical complexity.The proposed method (cgCoHOG or cgCoHED) in this thesis can eliminate all these disadvantages by using color gradient method instead of double angle representation. It takes full advantage of the color information and gives the consistent results with a reasonable computational cost. The proposed method has two contributions: The one is without increasing dimension, the feature vector which provides higher classification accuracy than traditional ones in classification progress, can be generated. The second contribution is that, time consuming of the proposed method is lower than the others. These contributions make it significantly practical in real-time applications such as pedestrian detection.Experimental results clearly reveal the superiority in terms of time and accuracy of the proposed method than other traditional ones.KEYWORDS: CoHOG - CoHED - Heterogeneous Features - Object Classification
Benzer Tezler
- Multi-scale recursive context aggregation network for semantic segmentation
Anlamsal bölümleme için çok ölçekli özyinelemeli bağlam birleştirme ağı
ABDULLAH YALÇIN
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET KESKİNÖZ
- Makine öğrenmesi tabanlı gerçek zamanlı medikal nesnelerin interneti çerçevesinin geliştirilmesi
Development of machine learning-based real-time medical internet of things framework
EMRE YILDIRIM
Doktora
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDüzce ÜniversitesiElektrik-Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. ALİ ÇALHAN
- Optik koherens tomografisi görüntüleri kullanarak evrişimsel sinir ağı tabanlı retinal hastalık tespiti
Convolutional neural network based retinal disease detection via optical coherence tomography images
İSMAİL KAYADİBİ
Yüksek Lisans
Türkçe
2021
Mühendislik BilimleriAfyon Kocatepe ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ GÜR EMRE GÜRAKSIN
- Age of information and unbiased federated learning in energy harvesting error-prone channels
Hataya açık kanallar üzerinde enerji hasadı ile tarafsız federe öğrenme ve bilgi yaşı
ZEYNEP ÇAKIR
Yüksek Lisans
İngilizce
2022
Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ELİF TUĞÇE CERAN ARSLAN
- Estimation and restoration for heat haze effects in image and video processing
Görüntü ve video işlemede ısı dalgalanması etkilerinin tahmini ve restorasyonu
ÖZLEM ALPERGÜN TANAS
Yüksek Lisans
İngilizce
2024
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. ENDER METE EKŞİOĞLU