Ald grown zno as an alternative material for plasmonic and uncooled infrared imaging applications
Plazmonik ve soğutmasız kızılötesi görüntüleme uygulamaları için alternatif malzeme olarak atomik katman kaplama yöntemi ile büyütülmüş çinko oksit
- Tez No: 360998
- Danışmanlar: YRD. DOÇ. DR. ALİ KEMAL OKYAY
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2014
- Dil: İngilizce
- Üniversite: İhsan Doğramacı Bilkent Üniversitesi
- Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 63
Özet
Plasmonics is touted as a milestone in optoelectronics as this technology can form a bridge between electronics and photonics, enabling the integration of electronics and photonic circuits at the nanoscale. Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Recently, there is an increased effort in the search for alternative plasmonic materials including Si, Ge, III-Nitrides and transparent conductive oxides. The main appeal of these materials, most of them semiconductors, is their lower optical losses, especially in the infrared (IR) regime, compared to noble metals owing to their lower number of free electrons. Other advantages can be listed as low-cost and control on plasma frequency thanks to the tunable electron concentration i.e. effective doping level. This work focuses on atomic layer deposition (ALD) grown ZnO as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. It is shown that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectric properties. In order to demonstrate plasmonic resonances, a grating structure is simulated using finite-difference-time-domain (FDTD) method and an ultra-wide-band (4-15 µm) infrared absorber is computationally demonstrated. Finally, an all ZnO microbolometer is proposed, where ALD grown ZnO is employed as both the thermistor and the absorber of a microbolometer which is an uncooled infrared imaging units that relies on the resistance change of the active material (thermistor) as it heats up due to the absorption of incident electromagnetic radiation by the absorber material. The material complexity and process steps of microbolometers could be reduced if the thermistor layer and the absorber layer were consolidated in a single layer. Computational analysis of an all-ZnO microbolometer structure using FDTD method is conducted in order to calculate the absorptivity in the long-wave infrared (LWIR) region (8-12 μm). In addition, thermal simulations of the microbolometer structure are conducted using finite element method, and time constant and noise-equivalent-temperature-difference (NETD) values are extracted.
Özet (Çeviri)
Plasmonics is touted as a milestone in optoelectronics as this technology can form a bridge between electronics and photonics, enabling the integration of electronics and photonic circuits at the nanoscale. Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Recently, there is an increased effort in the search for alternative plasmonic materials including Si, Ge, III-Nitrides and transparent conductive oxides. The main appeal of these materials, most of them semiconductors, is their lower optical losses, especially in the infrared (IR) regime, compared to noble metals owing to their lower number of free electrons. Other advantages can be listed as low-cost and control on plasma frequency thanks to the tunable electron concentration i.e. effective doping level. This work focuses on atomic layer deposition (ALD) grown ZnO as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. It is shown that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectric properties. In order to demonstrate plasmonic resonances, a grating structure is simulated using finite-difference-time-domain (FDTD) method and an ultra-wide-band (4-15 µm) infrared absorber is computationally demonstrated. Finally, an all ZnO microbolometer is proposed, where ALD grown ZnO is employed as both the thermistor and the absorber of a microbolometer which is an uncooled infrared imaging units that relies on the resistance change of the active material (thermistor) as it heats up due to the absorption of incident electromagnetic radiation by the absorber material. The material complexity and process steps of microbolometers could be reduced if the thermistor layer and the absorber layer were consolidated in a single layer. Computational analysis of an all-ZnO microbolometer structure using FDTD method is conducted in order to calculate the absorptivity in the long-wave infrared (LWIR) region (8-12 μm). In addition, thermal simulations of the microbolometer structure are conducted using finite element method, and time constant and noise-equivalent-temperature-difference (NETD) values are extracted.
Benzer Tezler
- Atomic layer deposition of III-nitrides and metal oxides; their application in area selective ALD
III-nitratların ve metal oksitlerin atomik katman kaplamısı; bunların alan seçici ALD'deki uygulamaları
ALI HAIDER
Doktora
İngilizce
2017
Bilim ve Teknolojiİhsan Doğramacı Bilkent ÜniversitesiMalzeme Bilimi ve Nanoteknoloji Ana Bilim Dalı
Assist. Prof. AYKUTLU DANA
DR. NECMİ BIYIKLI
- Investigation of photodetectors based on III-nitride and metal oxide thin films deposited by atomic layer deposition
Atomik katman kaplama tekniği ile III-nitrür ve metal-oksit bileşik temelli fotodedektörlerin araştırılması
BURAK TEKCAN
Yüksek Lisans
İngilizce
2015
Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. ALİ KEMAL OKYAY
- ALD yöntemi kullanılarak üretilmiş ZnO,TiO2 ve HfO2 ince film kaplamaların karakterizasyonu ve diyot özelliklerinin incelenmesi
Characterizations and diode properties of ZnO, TiO2 and HfO2 thin films produced by ALD
YAĞMUR ALTAN
Yüksek Lisans
Türkçe
2019
Metalurji MühendisliğiGazi ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
PROF. DR. HAKAN ATEŞ
- In-situ doped FZO films by ALD for TCO applications
TCO uygulamarı için ALD tarafından yerinde katkılanmış FZO filmler
MERYEM TUNÇKANAT
Yüksek Lisans
İngilizce
2023
Bilim ve TeknolojiOrta Doğu Teknik ÜniversitesiMikro ve Nanoteknoloji Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MUHSİNE BİLGE İMER
PROF. DR. ALPAN BEK
- Atomic layer deposition of metal oxides on self-assembled peptide nanofiber templates for fabrication of functional nanomaterials
Kendıliğinden düzenlenen peptit nanolif kalıplar ve atomik katman kaplama yöntemiyle fonksiyonel nanomalzeme üretimi
HAMİT EREN
Yüksek Lisans
İngilizce
2016
Mühendislik Bilimleriİhsan Doğramacı Bilkent ÜniversitesiMalzeme Bilimi ve Nanoteknoloji Ana Bilim Dalı
DOÇ. DR. MUSTAFA ÖZGÜR GÜLER