Geri Dön

Capillary kinetics between multi asperity surfaces

Başlık çevirisi mevcut değil.

  1. Tez No: 401668
  2. Yazar: EMRECAN SÖYLEMEZ
  3. Danışmanlar: PROF. MAARTEN P. DE BOER
  4. Tez Türü: Doktora
  5. Konular: Makine Mühendisliği, Mechanical Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2014
  8. Dil: İngilizce
  9. Üniversite: Carnegie Mellon University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Makine Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 204

Özet

Özet yok.

Özet (Çeviri)

Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in the equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. To demonstrate the effects, a custom micromachine characterization system is built that allows for full environmental control (pressure, humidity, and gas composition) while retaining full micromachine characterization techniques (long working distance interferometry, electrical probe connectivity, actuation scripting capability). The system also includes an effective in situ surface plasma cleaning mechanism. The average spontaneous crack healing velocity, ̅, between plasma-cleaned hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of ̅ versus energy release rate, , reveals log-linear behavior, while the slope [ ̅ ] decreases with increasing relative humidity. An interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism. A variety of alcohol vapors significantly reduce or perhaps eliminate wear in sliding micro-machined contacts. However, these vapors may increase adhesion due to the capillary forces. Equilibrium adhesion energies at various partial pressures are found for n-pentanol (long chain molecule) and ethanol (short chain molecule). For low partial pressures (p/ps=0.3), adhesion energy of n-pentanol is even larger than water.

Benzer Tezler

  1. Halloysit mineralinin termal deformasyon kinetik ve termodinamiği

    Thermal deformation kinetics and thermodynamic of halloysite mineral

    FATMA EDA ÖZGÜVEN

    Doktora

    Türkçe

    Türkçe

    2021

    KimyaAnkara Üniversitesi

    Kimya Ana Bilim Dalı

    PROF. DR. MÜŞERREF ÖNAL

  2. Eritrosit agregasyon kinetiğine etkili faktörler

    The factors affecting red blood cell aggregation kinetics

    MEHMET ÜYÜKLÜ

    Doktora

    Türkçe

    Türkçe

    2012

    FizyolojiAkdeniz Üniversitesi

    Fizyoloji Ana Bilim Dalı

    PROF. DR. MURAT CANPOLAT

  3. Liquid-liquid extraction with microfluidic devices: study of interfacial structure and kinetics of transfer

    Mikroakışkan cihazlar ile sıvı-sıvı ekstraksiyonu işlemi: arayüzey yapı çalışması ve transfer kinetiği

    ZELİHA CANSU CANBEK ÖZDİL

    Yüksek Lisans

    İngilizce

    İngilizce

    2011

    KimyaUniversität Regensburg

    Kimya Ana Bilim Dalı

    PROF. DR. WERNER KUNZ

  4. Computer simulation of grain boundary grooving by anisotropic surface drift diffusion due to capillary, electromigration and elastostatic forces

    Kapiler, elektrogöç ve elastostatik kuvvetler etkisinde yön bağımlı yüzey sürüklenme difüzyonu ile tane sınırı oluklanmasının bilgisayar benzetimi

    ÖNCÜ AKYILDIZ

    Doktora

    İngilizce

    İngilizce

    2010

    Metalurji MühendisliğiOrta Doğu Teknik Üniversitesi

    PROF. DR. TARIK ÖMER OĞURTANI

    PROF. DR. MEHMET KADRİ AYDINOL

  5. Kuantum noktaların elektrik ve gerinim alanları etkisi altında modellenmesi ve tasarımı

    Modeling and design of quantum dots under the effect of electric and stress field

    NUR SEDA AYDIN

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    Metalurji MühendisliğiTOBB Ekonomi ve Teknoloji Üniversitesi

    Mikro ve Nanoteknoloji Ana Bilim Dalı

    YRD. DOÇ. DR. ERSİN EMRE ÖREN