Geri Dön

Development of a vehicle stability control strategy for a hybrid electric vehicle equipped with axle motors

Başlık çevirisi mevcut değil.

  1. Tez No: 402024
  2. Yazar: KEREM BAYAR
  3. Danışmanlar: PROF. GIORGIO RIZZONI, PROF. JUNMIN WANG
  4. Tez Türü: Doktora
  5. Konular: Makine Mühendisliği, Mechanical Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2011
  8. Dil: İngilizce
  9. Üniversite: The Ohio State University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 184

Özet

Özet yok.

Özet (Çeviri)

Being one of the more important trends in the automotive industry today, Plug-in Hybrid Electric Vehicles (PHEV) are predicted by experts to be very popular in close future as they provide significant benefit in fuel economy as well as reduction in greenhouse gas emissions. PHEVs share the characteristics of both a conventional hybrid electric vehicle, having an electric motor(s) and an internal combustion engine; and of an all-electric vehicle, also having a plug to connect to the electrical grid. Having such a powertrain, the PHEV provides not only all electric drive potential with zero emissions and fuel consumption, but also eliminates the problem of range anxiety associated to all-electric vehicles, as the combustion engine works as a backup when the batteries are depleted. On the other hand, in addition to these benefits in terms of fuel economy and emissions, there is another, contingently underrated benefit associated with a PHEV, which is the subject of this dissertation: Utilizing the electric motors of the PHEV for vehicle stability control (VSC). This dissertation aims showing that including the axle electric motors, specifically for the PHEV considered in this study, within the proposed VSC scheme improves the performance of vehicle stability control. For this purpose, firstly a literature survey on VSC schemes for conventional vehicles is carried out and simulations are performed with the aim of outlining the limitations of conventional VSC schemes that are mostly based on differential braking and engine intervention. This subject is linked to the potential benefits of using electric motors within a VSC scheme. Then a simulator is developed that captures the dynamic behavior of the hybrid powertrain and the PHEV in order to evaluate vehicle dynamic response and stability. Using the mathematical model equations, the proposed VSC scheme is developed, which is based on allocating the control action, namely the corrective yaw moment and longitudinal force for tracking the desired yaw rate and speed, to individual wheel slip ratios. The desired slip ratio for each wheel is achieved by integrated wheel EHB and axle electric motor torque control. Taking the developed vehicle simulator as a platform, the proposed VSC scheme is tested with computer simulations considering extreme steering maneuvers, by analyzing vehicle and drivetrain response, and it is evaluated in comparison to conventional fuzzy VSC schemes. The comparison is done not only in terms of dynamic vehicle response, stability and performance, but also from an energy consumption standpoint which is an important feature of hybrid electric vehicles. Finally, the proposed VSC strategy is tested in real time, with a model in the loop simulation setup. Part of the simulator that includes the driver, powertrain and vehicle dynamics models are loaded to the DSpace HIL, and the controller model is loaded to the DSpace MicroAutoBox vehicle controller, with CAN protocol established in between for communication. By means the performance of the proposed VSC is verified not only with computer simulations, but also in real time, verifying its implementability.

Benzer Tezler

  1. Optimized power control strategy for a proton exchange membrane fuel cell system

    Proton değişim membranlı yakıt hücresi sistemi için optimize edilmiş güç kontrol stratejisi

    ÖMER BURAK SARIÇAY

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    PROF. DR. FİKRET ÇALIŞKAN

  2. Modelling longitudinal motion of an electric vehicle and wheel slip control through NN based uncertainty prediction

    Elektrikli aracın boyuna hareketinin modellenmesi ve yapay sinir ağı tabanlı belirsizlik kestirimli tekerlek kayma kontrolü

    DUYGU ÖZYILDIRIM

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. OVSANNA SETA ESTRADA

  3. Advancing quadcopter autonomy: Comparative analysis of conventional control strategies and integration of fuzzy PID for enhanced performance

    Quadcopter özerkliğini geliştirme: Geleneksel kontrol stratejilerinin karşılaştırmalı analizi ve gelişmiş performans için fuzzy PID entegrasyonu

    RAYANE SAIM

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Gelişim Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HALİT YAHYA

  4. Power management strategy of stand-alone microgrid with hydrogen fuel cell and renewable sources

    Hidrojen yakıt ünitesi ve yenilenebilir kaynaklar içeren şebekeden bağımsız bir mikroşebeke'nin güç yönetim stratejisi

    JUN MA

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Elektrik ve Elektronik MühendisliğiYıldız Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUSTAFA BAYSAL

  5. Demiryolu araçları için yeniden tutunma kontrolünün ve kararlılık analizlerinin yapılması

    Re-adhesion control and stability analysis for a railway vehicle

    ÇAĞLAR UYULAN

    Doktora

    Türkçe

    Türkçe

    2017

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. METİN GÖKAŞAN