Clinical data analysis for prediction of urinary incontinence
Başlık çevirisi mevcut değil.
- Tez No: 402694
- Danışmanlar: DR. MOHAMMAD-REZA SIADAT
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: İngilizce
- Üniversite: Oakland University
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 156
Özet
Özet yok.
Özet (Çeviri)
It is common for clinical data in survey trials to be incomplete and inconsistent for several reasons. One objective of this study is to identify and eliminate inconsistent data as an important data mining preprocessing step. We define three types of incomplete data: missing data due to skip pattern (SPMD), undetermined missing data (UMD) and genuine missing data (GMD). Identifying the type of missing data is another important objective as all missing data types cannot be treated the same. This goal cannot be achieved manually on large data of complex surveys since each subject should be processed individually. Experiments are conducted on a longitudinal questionnaire (MESA). MESA dataset was collected between 1983-1990 to create a set of questions that can reliably predict future Urinary Incontinence (UI). The analyses are accomplished in a mathematical framework by exploiting graph theoretic structure inherent in the questionnaire. An undirected graph is built using mutually inconsistent responses as well as its complement. The responses not in the largest maximal clique of complement graph are considered inconsistent. Further, all potential paths in questionnaire's graph are considered, based on responses of subjects, to identify each type of incomplete data. Once SPMD is determined, MESA data is stratified to divide the data into stratums with potentially different UI risk factors. Rough set imputation is applied, on the GMD portion of the incomplete data. ReliefF attribute selection technique and logistic regression is used to determine the potential predictive factors with their corresponding prediction probabilities forming the continence index on the preprocessed MESA data. The incomplete data analysis results show 15.4% GMD, 9.8% SPMD, 12.9% UMD and 0.021% inconsistent data. Proposed preprocessing methods are prerequisites for any data mining of clinical survey data. The predictive index can be applied for immediate screening and for predicting future urinary incontinence in older woman of comparable demographics.
Benzer Tezler
- İnkontinanslı kadın hastalarda hasta hikayesi, klinik muayne bulguları ve ürodinami bulgularının karşılaştırılması
The comparison of patient's history, clinical examination findings and urodynamic study in women with urinary incontinence
ERAY KEMAHLI
- Mesane kanseri tanı ve izleminde yeni bir tümör belirteci olan mesane kanseri fibronektin'in analitik ve klinik değerlendirilmesi
Analytical and clinical evaluation of new urinary tumor marker: Bladder tumor fibronectin for diagnosis and follow up of bladder cancer
NİLGÜN MUTLU
- Benign prostat hiperplazisi olan hastalarda prostat hacmi ile serum prostat spesifik antijen düzeyleri arasındaki ilişki
Relationship between prostate volume and serum prostate specific antigen level in patients with benign prostate hyperplasy
ERCÜMENT KESKİN
- Erciyes Üniversitesi hastaneleri klinik mikrobiyoloji ve enfeksiyon hastalıkları servisine yatırılan hastaların epidemiyolojik özelliklerinin değerlendirilmesi
Evaluation of epidemiological features of the patients who are hospitalized at Erciyes University hospitals clinical microbiology and infectional diseases
SERPİL SOYLU
Yüksek Lisans
Türkçe
2004
Halk SağlığıErciyes ÜniversitesiHalk Sağlığı Ana Bilim Dalı
PROF.DR. MUALLA AYKUT
- Çocukluk yaş gruplarında semptomatik idrar yolu enfeksiyonunun erken tanısında çeşitli tarama testlerinin etkinliklerinin karşılaştırılması
Başlık çevirisi yok
HALİL İBRAHİM AYDIN
Tıpta Uzmanlık
Türkçe
1998
Çocuk Sağlığı ve HastalıklarıGATAÇocuk Sağlığı ve Hastalıkları Ana Bilim Dalı
PROF. DR. ERDAL GÖKÇAY