Geri Dön

Integrated epigenomics and metabolomics analysis in twins

Başlık çevirisi mevcut değil.

  1. Tez No: 402758
  2. Yazar: İDİL YET
  3. Danışmanlar: DR. JORDANA BELL
  4. Tez Türü: Doktora
  5. Konular: Genetik, Moleküler Tıp, Genetics, Molecular Medicine
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2016
  8. Dil: İngilizce
  9. Üniversite: King's College London
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 169

Özet

Özet yok.

Özet (Çeviri)

Epigenetics and metabolomics are rapidly growing areas of research, in part due to recent advances in technology that have allowed for a wide coverage of the human genome. Metabolites are small compounds present in cell and body fluids, and are involved in biochemical processes of the cell. Quantitative trait loci associated with levels of individual metabolites (mQTLs) have been identified from numerous metabolome GWAS. Here, I analysed metabolite levels in twins with the aim of identifying genetic variants that influence metabolomic traits (mQTLs) using two different metabolomics platforms, and consequently compared the results to report stable metabolites on both technologies to ultimately enable combining metabolite profiles across these two platforms. DNA methylation is a biochemical process that is vital for mammalian development. It is present throughout the genome and is the most extensively studied epigenetic mark. Previous studies have explored the heritability of DNA methylation and have identified methylation QTLs (meQTL). Here, I identified meQTLs with the goal of assesing the evidence of genetic effects influence not only DNA methylation levels, but also variability by using MZ-twin discordance as a measure of variance. Epigenetic mechanisms and metabolomic profiles have both been shown to play a role in gene expression and susceptibility for complex human disease. Here, I analysed the association between type 2 diabetes and metabolomic and epigenetic datasets and combined the data to identify connections between these levels of biological data at genetic variants linked to type 2 diabetes to gain more insight into the disease susceptibility and progression. Overall, the results confirmed previous findings of strong genetic influences on metabolites and extend current knowledge about genetic effects underlying several biochemical pathways. Additionally, the results also showed genetic influences on DNA methylation, and give insights into mechanisms by which genetic impacts epigenetic processes. Lastly, the findings show that specific genetic susceptibility variants for type 2 diabetes can also impact epigenetic and metabolomics profiles, and can help improve our understanding of the disease etiology.

Benzer Tezler

  1. Sporadik kolorektal kanserlerde epigenomik ve transkriptomik profilin entegrasyonu

    Integration of epigenomics and transcriptomics profiles in colorectal cancer

    EDİBE ECE ABACI

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    BiyoteknolojiAnkara Üniversitesi

    Temel Biyoteknoloji Ana Bilim Dalı

    PROF. DR. HİLAL ÖZDAĞ

  2. Ankilozan spondilit hastalığının moleküler mekanizmasının çoklu-omik verilerin entegre analizi ile incelenmesi

    Investigation of molecular mechanism of ankylosing spondylitis by multi-omics data integration

    KEREM UZALA

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Biyolojiİstanbul Medeniyet Üniversitesi

    Biyolojik Veri Bilimi Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUHAMMED ERKAN KARABEKMEZ

  3. Nutrigenetik ve mikrobiota testlerinin bireye özgü klinik kullanımı için test panellerinin oluşturulması

    Formation of test panels for individual-specific use of nutrigenetics and microbiota tests

    GÜLSEN MERAL

    Doktora

    Türkçe

    Türkçe

    2024

    GenetikBiruni Üniversitesi

    Moleküler Biyokimya ve Genetik Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ELİF SİBEL ASLAN

  4. Bayesian networks for omics data analysis in hepatocellular carcinoma single-cell sequencing

    Hepatosellüler karsinomun tekil hücre diziliminde omiklerin veri analizi için Bayes ağları

    MUNTADHER ZAHID JIHAD

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    GenetikHacettepe Üniversitesi

    Biyoenformatik Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ İDİL YET

  5. Integrative network modelling of the dasatinib treatment in glioblastoma stem cells

    Glioblastoma kök hücrelerinde dasatinib tedavisinin bütünleyici ağ modellemesi

    GÖKÇE SENGER

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    BiyolojiOrta Doğu Teknik Üniversitesi

    Sağlık Bilişimi Ana Bilim Dalı

    DOÇ. NURCAN TUNÇBAĞ