Improving protein docking using efficient sustainable evolutionary algorithm
Başlık çevirisi mevcut değil.
- Tez No: 403139
- Danışmanlar: Dr. JIANJUN HU
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2009
- Dil: İngilizce
- Üniversite: University of South Caroline
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 59
Özet
Özet yok.
Özet (Çeviri)
AutoDock is a widely used automated protein docking program in structure-based drug-design. Different search algorithms, such as Simulated Annealing, traditional Genetic Algorithm and Lamarckian Genetic Algorithm are used in AutoDock. However, the docking performance of these algorithms is still limited by the local optima issue in simulated annealing or the premature convergence issue existing in traditional evolutionary algorithm models. And due to the stochastic nature of the search algorithms, usually users need to do multiple runs to get reasonable docking results, which is timeconsuming. We have developed a new docking algorithm AutoDockX by applying a sustainable genetic algorithm named ALPS to the protein docking problem. We tested the docking performances over three different proteins (pr, cox and hsp90) with more than 20 candidate ligands for each protein. Our experiments showed that our sustainable GA based AutodockX gives significantly better docking performance than all the existing search algorithms implemented in the latest version of AutoDock4. Our algorithm also has the benefits of less running time and much higher robustness. Instead of running a genetic algorithm or LGA search many times (e.g. 10), a single run of AutoDockX allows us to get better results. AutodockX thus has unique advantages in large-scale drugcandidate virtual screening in which millions of ligands need to be docked.
Benzer Tezler
- Computational determination of potential CK2 inhibitors
CK2 (kasein kinase II) potansiyel inhibitörlerinin hesapsal olarak belirlenmesi
İPEK KOCA KOLUKISA
Yüksek Lisans
İngilizce
2022
Kimya MühendisliğiYeditepe ÜniversitesiKimya Mühendisliği Ana Bilim Dalı
PROF. DR. NİHAN ÇELEBİ ÖLÇÜM
- Eugenol, timol ve karvakrol uzantılı yeni ranolazin türevlerinin sentezi
Synthesis of new ranolazine derivatives with eugenol, thymol and carvacrol extensions
BEGÜM OSMANOĞULLARI
- Geobacillus kaustophilus alfa-glukuronidaz enziminin in-siliko yaklaşımlar ile protein mühendisliğinin gerçekleştirilmesi
Protein engineering of Geobacillus kaustophilus alfa-glucuronidase enzyme by in-silico approaches
ELİF ALTUNKÜLAH
Yüksek Lisans
Türkçe
2023
BiyomühendislikKafkas ÜniversitesiBiyomühendislik Ana Bilim Dalı
DR. ÖĞR. ÜYESİ YUNUS ENSARİ
- Fulleren C60 nanopartikülünün meme kanserine karşı koruyucu etkilerinin in vivo, in vitro ve in silico analizlerle araştırılması
The investigation of protective effects of fullerene C60 nanoparticle against to breast cancer by in vi̇vo, in vitro and in silico analysis
SEDA BEYAZ
- Türkiye'de sigara ve nargile bağımlılığının tespitinde kullanılabilecek üriner protein biyobelirteçlerinin geliştirilmesi
Improving urinary protein biomarkers can be used to determi̇ne the dependency on ci̇garettes and water pipes Turkey
HALİL YEŞİL
Yüksek Lisans
Türkçe
2019
BiyoteknolojiMersin ÜniversitesiBiyoteknoloji Ana Bilim Dalı
PROF. DR. NEFİSE ÖZLEN ŞAHİN