Geri Dön

Enterkonnekte elektrik güç sistemlerinde kapalı çevrim güç akışlarını önlemeye / düzenlemeye yönelik bulanık karar verme temelli bir yöntem

A fuzzy - decision making based method to prevent / regulate loop flows in interconnected electrical power systems

  1. Tez No: 408737
  2. Yazar: GÜLCİHAN ÖZDEMİR DAĞ
  3. Danışmanlar: PROF. DR. MUSTAFA BAĞRIYANIK
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Enerji, Electrical and Electronics Engineering, Energy
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2011
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Bilişim Enstitüsü
  11. Ana Bilim Dalı: Hesaplamalı Bilimler ve Mühendislik Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 188

Özet

Seksenli yıllara kadar tüm dünyada elektrik enerji sistemlerinin tamamı; üretim, iletim ve da˘gıtım devletlerin kontrolünde idi. Bunun ba¸slıca nedeni çok büyük yatırım ve i¸sletme maliyetlerinin olması idi. Kalitenin ve maliyetlerin ancak rekabet ortamlarında olu¸saca˘gına inanılan kapitalist ekonomilerde, özellikle hava yolu i¸sletmecili˘ginde tekel sisteminin kaldırılıp serbest piyasa ko¸sullarına geçilmesi ile ula¸sım maliyetlerindeki ciddi dü¸sü¸s ve yaygın ekonomik servislerin gelmesi ile, benzer bir ba¸sarının elektrik sektöründe de olu¸saca˘gına olan inançla elektrik güç sistemlerinde de özelle¸stirme furyası ba¸sladı. ˙Ingiltere, ˙Izlanda ve ABD bu i¸sin öncülü˘günü yaparak sistemlerinin neredeyse tamamını özelle¸stirerek sektörü özel te¸sebüse bıraktı. Daha do˘grusu elektrik enerjisinin üretimi, iletimi ve da˘gıtımını farklı farklı firmalara satılarak ba¸ska türlü bir tekelin olu¸sması da engellenmeye çalı¸sıldı. Devlet kendisi, ya da kurdu˘gu düzenleyici otoriteler aracılı˘gı ile sektörde yanlızca kontrolör olarak görev üstlendi. Devlet tarafından i¸sletilen sistemlerde güç kayıplarının yüksekli˘gi, verimin dü¸süklü˘gü, veya enerjinin çok uzun yollardan (iletim hatlarında dola¸sarak) tüketim noktalarına varması sorununa ciddi bir ¸sekilde yakla¸sılmadı. Maliyetlerin artması do˘grudan tüketiciye yansıtıldı˘gından, yada maliyetlerin bir kısmının devlet tarafından kar¸sılanması nedeni ile enterkonnette sistemlerin do˘gasında var olan kapalı çevrimler içinde dola¸san enerji (yada bu dola¸sım sonucu hatlarda olu¸san ısı kayıpları) pek sorun olarak görülmedi. Özelle¸stirme sonucunda; hangi miktarlarda enerjinin hangi iletim hatlarında iletildi˘gi, hangi firmanın hangi iletim hattını ne kadar süre ile ve hangi saatlerde kullandı˘gı, enerji iletim sisteminin hatlarının dolulu˘gu nedeni ile e˘ger sistem bir arıza durumuna geçerse bundan kimin sorumlu oldu˘gu konuları çok önem kazanmaya ba¸sladı. Elektrik enerjisinin izleyece˘gi yol fizik kurallarına göre yani, Kirchhoff'un akım yasası ve Ohm yasasına göre belirlenir. Enerji akı¸sı kontrat yapılan güzer˘gah yerine empedansı en dü¸sük olan iletim hatlarını seçer. Bu durum, enerjiyi satınalan ile satan arasına üçüncü birinin girmesi sonucunu do˘gurur. Enerji akı¸sının böyle olması sonucu bazı i¸sletim problemlerini ortaya çıkardı. Þöyle ki, enerji alı¸s-veri¸s planında sınırlamalar, iletim kapasitesinde de˘gi¸simler, hatların a¸sırı yüklenmesi, güvenlik ve güvenirlilik konuları ve enerjinin serbest piyasada fiyatlandırılması komplikasyonları, enerjiyi satınalan ile onu satan arasına üçüncü birinin (sistemi kullanılan taraf) girmesi sonucu, üçüncü birinin sisteminin kullanım bedelinin kimler tarafından kar¸sılanaca˘gı gibi. Kapalı çevrim güç akı¸sı, i¸ste bu üçüncü birimin i¸sgal edilen hatlarında olu¸san enerji kayıplarının nasıl ücretlendirilece˘gi, kime faturalandırılaca˘gı, sistemde hatların dolu olması durumunda tıkanıklı˘ga sebep olunmasından, sistemin çöküntüye gitmesinden kimlerin ne derecede sorumlu tutulaca˘gı gibi konuları içerdi˘ginden çok önem kazanmı¸stır. Halen aktif bir ara¸stırma konusudur. Bu çalı¸smada amaç; enterkonnekte elektrik güç iletim sistemlerinde kapalı çevrim güç akı¸slarını önlemeye/düzenlemeye yönelik bir yöntem geli¸stirmektir. Bunu gerçekle¸stirirken ilave amaçlar da probleme dahil edilmi¸stir. Bunlar; sistem baralarındaki gerilim profilinin bozulmaması ve düzeltilmesi (gerilim genliklerinin arzu edilen de˘gerlerde tutulması), iletim hatlarındaki hem aktif hem de reaktif kayıpların en aza indirilmesi ve temel durum de˘gerlerinden fazla uzakla¸sılmaması, hatlardaki güç akı¸slarının iletim hatlarının akım ta¸sıma kapasite limitleri dahilinde tutulmasıdır. Görüldü˘gü gibi problemimiz çok amaçlı ve çok kısıtları olan bir problemdir. Bu çoklu amaçlı ve kısıtlı problemde bulanık karar vermeden yararlanılmı¸stır. Bunun sonucunda elde edilen tek amaçlı en iyileme problemine evrimsel arama tekniklerinden genetik algoritmalar uygulanmı¸stır. Bu yöntemi düzenlerken i¸sletim ko¸sullarını etkileyen elektrik güç sistemi kontrol ve durum de˘gi¸skenleri ve bunların üzerlerindeki kısıtlamalar da göz önünde bulundurularak, bulanık ortamda her birisi için uygun üyelik fonksiyonlarının tespit edilmeleri ile modellenmi¸slerdir. Genetik algoritmaların uygulanması sırasında GA operatörlerininde probleme uyarlanması açısından çe¸sitli benzetimler yapılmı¸s ve litaratürdeki uygulamalar da incelenerek çalı¸smaya en uygun olanının tespiti yapılmı¸stır. Problem günlük bir i¸sletme problemi oldu˘gundan gün içerisinde defalarca çözümü yapılmaktadır. Bundan dolayı çözüm süreside önem te¸skil etmektedir. Çözüm süresinin azaltılması için hem genetik algoritmalarda paralel algoritmalar seçilmi¸s hem de kurumdaki yüksek ba¸sarım labratuvarlarından yararlanılarak yüksek ba¸sarımlı bilgisayarlarda paralel ortam hesaplama tekniklerinden yararlanılmı¸stır.

Özet (Çeviri)

After the liberalization of the electricity markets, the operation of the power system has fundamentally changed. How much power flows on which transmission lines, which company uses the other's transmission lines and/or the amount and duration of the transmission line usage have all become very important issues. When the actual power flow exceeds system-operating limit for a transmission path, the transmission system operators must immediately mitigate the transmission overloads to reduce the actual power flow across the path. The deviation of actual electric power flows in transmission circuits from the scheduled (expected) power flows is called closed loop flows, and/or unscheduled flows, and these flows may cause the transmission limit violations. The unscheduled flows have been seen as a serious problem, since these flows may result in blackouts and affect cross border trading in the electricity markets. Therefore, such flows in an interconnected power system should be kept under control to improve both the operation conditions and the market conditions. In interconnected power systems there are many parallel transmission lines and closed loops causing electrical energy to follow different routes to reach load centres. Thus, when for a reason a transmission line becomes out of service, there are alternative ways of feeding loads at the end of that particular transmission line. Otherwise, loss of electrical energy may cause interruption of all types of production, transportation, communication, entertainment, education and the other life related activities to be affected partially or totally. Up until eighties all activities of electrical power systems, such as production, transmission and distribution, were under the control of governments. The reason for this was that both investment and operation costs were too high. With the belief that both the quality and reduced cost would be possible in a free market, especially considering the success of deregulated aviation systems, electrical power systems were deregulated. England, Iceland and USA were the first to deregulate their power systems. Production, transmission, and distribution systems were privatized to different companies. Either government herself or via regulation authorities took the regulation role. High power loses, low efficiencies, or the long paths electrical energy travels through (using transmission systems) in a government controlled system were not taken into consideration seriously. Since the rising costs are directly adjusted to the customers' bill, or part of the cost is subsidized by government, the loop flows, which is a natural result of an interconnected power system, were not considered as a problem. As a result of deregulation the following questions have become quite important. How much power flows on which lines? Who is using a certain transmission line and how long the line is being used? At which hours a transmission line is used? If, due to overloaded lines a fault occurs who is responsible for this fault? Electrical power does not follow a prescribed line, it rather follows ohm's law. That is, energy does not follow from a contracted path, it flows through the lines which has the least resistance. This fact brings a third party into a picture when there is an energy seller and a buyer. This, is turn, creates operational problems, such as limitations on power transactions, changes in transmission line capacity, lines being overloaded, security and reliability problems, and complications in pricing the electricity in the market (who pays the transmission line usage, when there is third party between a buyer and seller on a contracted path). Closed loop flows, tries to answer the question as to who will be responsible for the line usage in the third party's system, how the pricing shall be done, who is and how much responsible for the congestion of transmission lines especially on the third party's system. This field is still a heavily researched area. The main purpose of this study is to design a method to control power flows in closed loops of interconnected electrical power systems. This problem has become significant due to deregulation in power systems. By this method we aim to prevent and/or regulate unwanted loop flows. There are some additional purposes needed to be handled besides the main purpose. These additional purposes are the voltage profiles of each bus of the system should not be destroyed, active and reactive power looses of transmission lines must be minimized and should not be far away from the one of basic case solution. The values of the transferred power must be kept under the current carrying limits of the transmission lines. As seen the problem has multi objectives and multi constraints that are needed to be handled. The multi objectives and multi constraints problem is handled by using fuzzy-decision-making techniques. The finalized single objective problem is optimized by using genetic algorithms which is one of the evolutionary search algorithms. The power system control variables, state variables and the constraints that are effecting the operational conditions of the system are also taking under considerations while arranging the method. A membership function is determined to each objectives and constraints in fuzzy environment. The break-points of the fuzzy membership functions are tested. After a set of simulations the best form of the membership functions are determined to improve the success rate of the solution of the problem. In fuzzification step, the objectives and constraints were fuzzified by using designated membership functions, where these functions should be properly constructed to guarantee the overall performance and improve the success rate of the solution of the problem. After a set of simulations the best form of the membership functions are determined by arranging the break-points of the fuzzy membership functions. The value or value of a fuzzy membership function defines the degree of membership that a crisp value has in a fuzzy set. The closer the value of membership is to one, the better the solution is for that objective or constraint. In fuzzy decision-making, the optimal solution is defined to be the one with the highest degree of membership, and thus the optimization problem becomes that of maximizing the satisfaction with the solution; subject to the crisp and fuzzy constraints. In the proposed approach, the objective functions were minimization of the line flows of the closed loop on the contracted paths, and minimization of both total active losses and total reactive losses. The constraints (voltages remaining within the limits, line flows remaining within the limits etc..) were also handled in fuzzy environment by using designated fuzzy membership functions. Two different shapes of fuzzy membership functions are tested for the main objective that is the line flows for the closed loops. One of the shapes is trapezoidal function. The other shape is exponential function. The study showed that more satisfying results can be obtained by using exponential form of the membership functions. It is described by four parameters that are the break-points of the function. The reason handling the objectives and constraints in fuzzy environment is that the small variations of power systems variables (bus voltages, line currents etc.,) from their limit values can be tolerated, and this can help to obtain one of the best solutions to the problem. Furthermore, one may reach to a better objective function by allowing small violations of limits. To what degree toleration and/or on which variable of power systems it is allowed depends on systems operating conditions. In practice, to determine the break-points of each fuzzy membership function, the experience of system operators are also taking in considerations. In optimization step, first, the applications of genetic algorithms in literature are checked. One of the good characteristics of evolutionary search algorithms is that they could be easily adapted from one problem to another by modifying related parameters and the way of application techniques of operators. Then some simulations are performed to determine the best variety of each operator of genetic algorithms that they fit better to our problem. The problem is an operational problem in power systems that is required to solve many times as a daily routine. That is why the time spent for a solution is gained importance. To reduce the computational time some parallel computing techniques and some types of parallel genetic algorithms are also searched. The simulations belong to larger systems among the test systems are used are performed using the utilities provided by the high performance computing lab in computational science and engineering department of informatics institute. The main disadvantage of genetic algorithms is the high CPU time execution. This can cause heavy computation demands in a large-scale power system case, resulting in large dimensional matrix operations. One way to overcome these computation demand is to use parallel algorithms in multi-processor computers or in distributed environments. To solve a computational problem, parallel computing simply involves the simultaneous use of many computing resources. Computing resources come in the form of either a single computer with multiple processors or multiple computers (computing nodes) connected by a fast network. In most cases, there are both paralleling and unparalleled parts in the problem formulations. The speed up of a program using multiple processors in parallel computing is limited by the time needed for the serial part of the program. There xxvii are also several factors that limit the speed up such as communication time for sending messages. Genetic algorithms are very powerful search and optimization techniques that can be applied to problems in many different areas. They can produce an acceptable solution to a problem in a reasonable time. However when they are applied to very hard and large problems it takes quit a long time. In that case there might be some effort to reduce the time into a reasonable range. One way of reducing execution time is to implement genetic algorithms in parallel environment. Master-slave parallelism among the types of parallel genetic algorithms was chosen. The algorithm was implemented in MATLAB environment using toolboxes such as genetic algorithm toolbox, parallel computing toolbox, distributed computing server, and MATPOWER which is an open source power flow program was also used. The large portion of the computation time is spent for the function evaluation in the problem. This is due to the nature of the problem solved. Master-slave parallel genetic algorithm is perfectly matched with the needs. It is concluded that by using a larger system, we would gain more benefit from using a high performance computing facility that allows parallel implementation of our program to get the system solution faster than the serial corresponding. As a result of this work can be concluded as follows. A fuzzy set theory based genetic algorithm procedure is proposed to control and/or prevent loop flows. The problem is formulated as a multi-objective problem subject to operational and electrical constraints and it is handled in fuzzy environment. The proposed method works well and very satisfactory results for the objectives such as scheduled path flows, active and reactive power losses are obtained. When the classical methods are used to control loop flow in a rigid manner a feasible solution may not be found. However, using the proposed method one can find a feasible solution. This can be better adjusted using different membership functions, since the shape of the membership function affects the satisfaction level appreciably.

Benzer Tezler

  1. Güç sistemlerindeki alanlar arası salınım için statik var kompansatör (SVC) tabanlı geniş alan sönümleme sistemi tasarımı

    Static var compensator (SVC) based wide area damping system design for inter-area oscillation in power systems

    ŞAMİL BAYCAN YALÇIN

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Elektrik ve Elektronik MühendisliğiMersin Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AHMET NACİ METE

  2. 154 kV bir iletim şebekesinin kapalı(ring) sisteme dönüşmesiyle çift taraflı beslenen trafo merkezlerinde bara kısa devre incelemesi

    Short circuit analysis of substations' busbars supplied by double feeder with upgrading of 154 kV transmission network to closed-loop system

    BİLAL ERİM

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. AYŞEN DEMİRÖREN

  3. Çok bölgeli elektrik güç sistemlerinde optimum yük frekans kontrolü

    Optimum load frequency control in multi-area electrical power systems

    AHMET KARYEYEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2009

    Elektrik ve Elektronik MühendisliğiSelçuk Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. NURETTİN ÇETİNKAYA

  4. Güç sistemlerinde simetrik ve simetrik olmayan arıza analizleri ve uygulamaları

    Symmetrical and unsymmetrical fault analysis and applications in power systems

    MUHAMMED MAŞUK DOĞANAY

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Elektrik ve Elektronik MühendisliğiBilecik Şeyh Edebali Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET KURBAN

  5. Güç sistemlerinde yük-frekans kontrolünde PID denetleyici ve parametrelerinin simbiyotik organizmalar arama algoritması ile ayarı

    PID controller in load frequency control of power systems and tuning of its parameters by symbiotic organisms search algorithm

    ZÜMRE YENEN YILMAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Elektrik ve Elektronik MühendisliğiDüzce Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. EMRE ÇELİK