Yapay sinir ağları ile yemekhane günlük talep tahmini
Refectory daily demand forecast using artificial neural netweorks
- Tez No: 410022
- Danışmanlar: DOÇ. DR. SEZAİ TOKAT
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: Türkçe
- Üniversite: Pamukkale Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 66
Özet
Günümüzde alışveriş merkezi, büyük sanayi kuruluşları ve üniversitelerin sayısının giderek artması ile birlikte yemek hizmeti sunan işletmelere olan ilgi de artmaktadır. Personeline yemek veren kurumlarda o gün kurum yemekhanesinde kaç kişinin yemek yiyeceği zaman ve maliyet açısından önem teşkil etmektedir. Bu açıdan bu sayının doğru olarak tahmin edilmesi kuruma önemli bir fayda sağlayacaktır. Bu çalışmada Pamukkale Üniversitesi (PAÜ) yemekhanesi verileri kullanılmıştır. PAÜ Pusula bilgi siteminden veriler alınarak üretilen yemek miktarını etkileyebileceği düşünülen kriterler ortaya çıkarılmıştır. Oluşturulan veri seti SPSS programında analiz edilerek veriler arasında ilişkiler test edilmiştir. Bu ilişkilere dayanılarak veriler eğitim ve test kümesi olarak iki kısma ayrılmıştır. Eğitim verileri Doğrusal Regresyon, Yapay Sinir Ağları tekniklerinden Çok Katmanlı Yapay Sinir Ağları ve Radyal Tabanlı Fonksiyon Yapay Sinir Ağları ile eğitilmiş ve test edilmiştir. Bu çalışma ile farklı yöntemler kullanılarak günlük yemek miktarı tayininin yapılabileceği gösterilmiştir. En iyi en kötü 38 günlük örnek üzerinde tahmin çalışması PAÜ yemekhanesi beslenme uzmanları ile yapılmıştır. Bu örnekler için tezde tasarlanan yemekhane günlük talep tahmin sistemlerinin genel olarak daha iyi sonuç verdiği gözlenmiştir. Günlük yemek tahmini için Matlab programında GUI tasarlanmıştır.
Özet (Çeviri)
Today, as the number of shopping centers, large industrial enterprises and universities are increasing, the interest in the business of providing food service is also increasing. Considering time and cost, it is important for the corporations how many staffs eat food in the refectories and dining halls that give food to its staffs. In this study, the data of Pamukkale University (PAU) refectory are used. By receiving data from PAU Computer Information System known as Pusula, the criteria which are thought to affect the amount of food cooked are detected. By analyzing generated data sets with SPSS program, relationship between data is tested. Based on these relationships data are divided into two parts as training and test group. Training data are trained by using Linear Regression, Techniques of Artificial Neural Networks Multi Layer Neural Network and Radial Basis Function Neural Networks and then tested. With this study, it is shown that by using different statistical and artificial intelligence methods daily food amount can be predicted better than experts' decisions. Prediction studies are executed on the best and worst 38 samples with PAU nutrition experts. For these samples it is observerd that our systems have better prediction performance. Also, a GUI is designed for daily meal prediction in Matlab program.
Benzer Tezler
- Evsel ve yemekhane atıklarından biyogaz üretimine işletim koşullarının etkisinin yapay sinir ağları ile incelenmesi
Investigation of the effect of operating conditions on biogas production from domestic and dining wastes by using artificial neural networks
ÖZKAN CEYHAN
- Adölesanlarda beslenme ile psikolojik durumun tahmini: İkincil öğrenci verileri ile bir yapay sinir ağı uygulaması
Predicting psychological state through nutrition in adolescents: An artificial neural network application with secondary student data
DENİZ GERÇEKER
Yüksek Lisans
Türkçe
2025
BiyoistatistikMarmara ÜniversitesiBiyoistatistik Ana Bilim Dalı
PROF. DR. GÜLNAZ NURAL BEKİROĞLU
- Yapay sinir agları ile elektriksel sistemlerde aşırı akım kavramı için kontrol sistemleri tasarımı
Control system design for prevention of overcurrent failures in electrical systems by using artificial neural networks
SEZGİN SEZGİNER
Yüksek Lisans
Türkçe
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
DOÇ. DR. KAYHAN GÜLEZ
- Yapay sinir ağları ile trafik yoğunluğu tahmini
Prediction of traffic congestion by artificial neural networks
MURAT NAS
Yüksek Lisans
Türkçe
2024
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. NESLİHAN SERAP ŞENGÖR
- Yapay sinir ağları ile değerli kağıt tanıma sistemi
Valuable paper identification system using artificial neural networks
SERKAN KABA
Yüksek Lisans
İngilizce
2009
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHaliç ÜniversitesiBilgisayar Mühendisliği Bölümü
PROF. DR. ALİ OKATAN