Geri Dön

İnsansı robot kolunun optimizasyonu ve dinamika analizi

Optimization and dynamic analysis of humanoid robot arm

  1. Tez No: 439526
  2. Yazar: OZAN KAYA
  3. Danışmanlar: PROF. DR. ŞENİZ ERTUĞRUL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Mekatronik Mühendisliği, Mechatronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2016
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Mekatronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Mekatronik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 99

Özet

Sanayide ve günlük yaşantımızın içinde belirli görevleri gerçekleştirilmesi için tasarlanmış olan robotlar günümüzde insandan esinlenerek tasarlanmaya başlanmıştır. İnsansı robotlar günümüzde birçok disiplinde araştırma konusu olarak araştırmacıların büyük bir ilgisini çekmektedir. Günümüzde insansı robotlar askeri amaçlı, saĞlık sektöründe, sanayide ve günlük ya¸santımızda insanlara yardımcı olması için devam etmekte olan geliştirme çalışmalarının temelini oluşturmaktadır. İnsansı robotlardan, insansı hareket kabiliyeti, çeviklik, kuvvet ve dayanıklılık gibi konularda yüksek kabiliyete sahip olmaları için farklı çalışmalara halen devam edilmektedir. Bu çalı¸smada bir insansı robot kolunun tasarımı ve üretimi gerçekle¸stirilmiştir. İnsansı robot kolunun uç kısmında meydana gelen şekil değişimi değerini iyileştirebilmek için statik analizler yardımıyla belirlenen kol parçalarına parametre optimizasyon i¸slemi uygulanmıştır. İnsansı robot kolunun hareket kabiliyetini belirleyebilmek için kolun dinamik analizleri gerçekleştirilmiştir. ˙Insansı robot kolunun eklem eksen takımları belirlenmiş, motor dişli sistemi seçilmiş ve tasarımı gerçekleştirilmiştir. Tasarlanan insansı robot kolunun parçaları üretilip birle¸stirme i¸slemi yapılmı¸stır. Birle¸stirme a¸samasında kar¸sıla¸sılan zorluklara değinilmiş ve yapılan değişiklikler açıklanmıştır. İnsansı robot kolunun eklem eksen dizilimlerinin ve kol uzunluklarının insansı robot kolunun ucunun erişebildiği sınırlarına etkisini belirleyebilmek için çalışma uzayı analizleri gerçekleştirilmiştir. İnsansı robot kolunda meydana gelen ¸sekil değişimini azaltmak için statik analizler sonucu belirlenen kol parçalarına parametre optimizasyon işlemi uygulanmı¸stır. Bu parçalar, kolun sonlu elemanlar yöntemi ile statik analizleri gerçekleştirilip gerilme yığılmaları ve şekil değişimleri değerlerinden yararlanılarak belirlenmiştir. Bu parçalara kolda meydana gelen şekil değişiminin matematiksel denklemi oluşturulup parça kesit parametreleri MATLAB yardımıyla değiştirilerek sonuçlar elde edilmiş, parametre optimizasyonu işlemi uygulanmıştır. Bu çalışmada ANSYS yardımıyla parametre optimizasyon işlemi tekrarlanmıştır. Bu sayede matematiksel denklemler sonucu elde edilen değerlerin doğruluğu gösterilmiştir. Parametre optimizasyonu için ANSYS programını kullanmanın en uygun parametrenin seçilmesinde kolaylık sa˘gladı˘gı görülmü¸stür. Kesit parametrelerindeki de˘gi¸simlerin kol ucunda meydana gelen şekil değişimine, kolda meydana gelen maksimum gerilmeye ve kolun toplam ağırlığına etkisi anlatılmıştır. Bu sonuçlar doğrultusunda bu parçaların boyutlarına karar verilmi¸stir. ˙Insansı robot kolunun üzerinde kullanılacak olan motor dişli sistemi seçilmiş olduğundan tasarlanan kolun eklemlerin sahip olduğu hareket kabiliyetleri dinamik denklemler ve benzetim işlemleri ile elde edilmiştir. Bu çalı¸smada kullanılan eklemlerin çevik bir hareket kabiliyetine sahip olması beklendiğinden dolayı eklemlere uygulanan hareket profillerinin eklemlerde olu¸sturdu zamana bağlı moment değerleri benzetim işlemleri yardımıyla elde edilmiştir. ˙Insansı robot kolu belirli görevleri gerçekle¸stirmek için çoğu zaman birden fazla eklemin hareket etmesi gerekmektedir. Bu yüzden hareket eden eklem sayısının elde edilen moment de˘gerlerine etkisi gözlemlenmiştir. Hareket eden eklemlerin hareket yönlerinin benzetim işlemi yardımıyla elde edilen zamana bağlı moment değerlerine etkisi incelenmiştir. ˙Ileriki çalışmalarda gerçekle¸stirilen dinamik analizlerde kullanılan robot kolu modelinin parçalarının şekil değiştirebilir olması ile elde edilen sonuçlar için analizler tekrarlanıp sonuçlar karşılaştırılacaktır. Elde edilen bu sonuçlar yardımıyla sonlu elemanlar yöntemi ile gerçekleştirilen parametre optimizasyon işleminin tekrarlanması amaçlanmaktadır.

Özet (Çeviri)

Robots which are used for different tasks in daily life and industry begin to be created in form of human. Humanoid robots provide new investigating areas for the researchers. Besides, the development of humanoid robot technologies are incrementally continued. The humanoid robots, which are the basis of the development of the newly technologies in designing machinery area, are used for helping people in military, industry, medical and daily life. Humanoid robots are expected to have durability, agility and powerful capability of movement like a human. Researchers focus on increasing efficiency of movement, appearance and controllability of humanoid robots. Because of this purpose, several electrical motor types and gear systems are still in the process of development. One of the new developments of gear systems is harmonic drive technology. The harmonic drives have features such as a high ratio, repeatability and small dimensions. The harmonic drives are preferred in the design of the humanoid robot joints due to small dimension and high ratio. One of the new developments of electrical motor is brushless flat motors. This type motors are preferred for features as small dimensions and high torque values. On the other hand, this type of motors are difficult to control. In this study, a humanoid robot arm has been designed. The harmonic drivers and brushless flat motors were used in design of humanoid robot arm. In this study, workspace analysis of the humanoid robot arm has been realised to define the limits of movement of the humanoid robot arm. After that, joint parts of humanoid robot arm has been optimised. Finally, dynamic analysis of humanoid robot arm has been realised to evaluate the limits of movement of the humanoid robot arm's joints. In this study, configuration of humanoid robot arm's joints were decided by comparing with several configuration of robot arm. After that, robot arm's joint cases were designed and produced according to dimensions of chosen electrical motor and harmonic drive. These cases were manufactured in Istanbul Technical University. Then, links between 2 joints were designed. At the initial state of the design these parts, it was created as separable three part and bolts contacts were used in its assembly. Since bending requires no extra bolt, it was decided that it can be created a whole part by bending process so that more rigid and light parts can be obtained. After that, whole assembly of the humanoid robot arm was made. During this assembly process, a number of design problems were arisen. One of these problem is that suitable connection surfaces were insufficient for assembling bearings between joint parts. This situation was overcame by creating a new part to obtain adequate contact surface and safe connection of these parts. In this study, workspace analysis of humanoid robot arm was made. It is important to define where humanoid robot arm can reach. That's why, workspace analysis is significant in showing limits of humanoid robot arm movement. In this study, maximum and minimum movement limits were defined by using capability of joints' rotation in MATLAB. Mathematical equations described movement of humanoid robot arm had to be obtained primarily. 2-D workspace area was obtained relevant to vertical joint rotation limits by using movement mathematical equation, since limits of joints' rotation were known. For this purpose, last joint was rotated to its last position value whereas second and fourth joint were in initial position. So first minimum limit was obtained. Then, fourth joint was rotated up to its capacity whereas others were maintaining their position. After that, only second joint was rotated up to its limit. By means of these operations, Minimum limits were obtained. For defining maximum limits, only second joint was rotated up to its limit while fourth and sixth were in zero position. Thus, the workspace analysis of joint configuration used in the humanoid robot arm was obtained. In this study, the workspace analysis was repeated for different types of configurations of robot arm by using their vertical joints. The results for the configurations were mentioned in this study. Finally, 3-D image of workspace of arm was obtained by using limits of both vertical and horizontal joints. Advantages and disadvantages of these configuration models for the humanoid robot arm were evaluated in this section. Humanoid robot arm is supposed to have capability of rigid structure and agility. The purpose of the rigid structure, parts of humanoid robot arm was optimised. But during this process, weight of arm must be as low as possible due to capacity of both electrical motor and harmonic drive which were selected. There were two boundaries to limit the optimization process. One of these boundaries was more rigid structure that means less deformation of humanoid robot arm. The other requirement is light arm design. First, statical analysis was made to define parts which cause more deformation than other parts. After that, inertia of these parts had to be increased for rigid structure. But it means that the more inertia of parts, the more mass of parts. In this case, more mass is not tolerable by means of capacity of joints in which selected electrical and harmonic drive is used. The purpose of light and rigid structure, there are two method of optimization. One of is that mathematical equation of deformation of humanoid arm is obtained. Other is using ANSYS. In our case, parameter optimization which changes parameter of part's section to increase inertia of part was made. First, matematical equations of deformation were obtained. Besides, some assumptions were made to obtain equations. After that, the results of the arm deformation was obtained by changing parameters of part section in MATLAB. These results were checked via ANSYS. Then, optimization process was made by using ANSYS parameter tool. It is easier to obtain best results than using mathematical equation in MATLAB. Owing to sheet metal bending process, these parts' section was designed as centroid. Specific dimensions were used in parameter optimization of these parts due to available thickness of sheet metal. So, optimization was made by using these thickness dimension. In this study, the results of the whole arm deformation , maximum stress in the arm and weight of the arm related to different thickness of these parts section was mentioned. The most suitable dimensions was selected eventually. In this study, definition of joint rotation limits had to be obtained due to capacity of motor and harmonic drive. That's why, dynamic analysis was made for all joints. In the dynamic analysis, different rotation profile such as sine, 2nd, 3th and 5th degree of rotation functions were used to observe the effects of the motion profile. It was aim to obtain necessary torque value in different rotation profile which were supplied to joints. Effects of using different rotation profile was observed and results were discussed. Then, it was aim to observe simultaneously moving two joint effects since two or more joints of the humanoid robot arm are generally rotated in any task. After obtained results, the effects on necessary torque value was observer different directional rotation of these joints. Thus, effects of rotation direction was observed. The effect of number of rotating joint was evaluated by dynamic analysis in ANSYS. Finally, dynamic analysis was performed in different rotation profile and by increasing number of moving joints simultaneously. For the purpose of defining capability of joints in specific task, the dynamic analysis which is performed by rotating one of robot arm's joints is certainly insufficient. Different combination of rotating joint and kind of drastic rotation profile must be used for dynamic analysis. In the next study, dynamic analysis will be repeated with using flexible body and the results will be compared with previous results. Thus, the effect of flexible body which can cause the oscillation will be observed. The parameter optimization process will be done over again by using data in the flexible body dynamic analysis.

Benzer Tezler

  1. 6 serbestlik dereceli insansı robot kolu empedans kontrolü benzetimi ve analizi

    6 degrees of freedom humanoid robot arm impedance control simulation and analysis

    HÜLYA ERASLAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞENİZ ERTUĞRUL

  2. Inverse dynamics control of a humanoid robot arm

    İnsansı bir robot kolunun ters dinamik kontrolü

    OĞUZHAN CEBE

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞENİZ ERTUĞRUL

  3. İnsansı robot kolu tasarımı ve yörünge kontrolü

    Design of a humanoid robot arm and trajectory control

    MUSA ÖZGÜN GÜLEÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞENİZ ERTUĞRUL

  4. Indirect force control in 6 dof humanoid robot arm using impedance controller

    Empedans kontrolünü kullanarak 6 serbestlik insansı robot kolunun dolaylı güç kontrolü

    BEHNAZ HOSSEINI

    Yüksek Lisans

    İngilizce

    İngilizce

    2014

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ALİ FUAT ERGENÇ

    YRD. DOÇ. DR. PINAR BOYRAZ

  5. Çevre ile temas içeren görevlerin insansı robot koluna kinestetik yöntem ile öğretilmesi ve hibrit hareket/kuvvet kontrolü

    Teaching a robot contact tasks by utilizing kinesthetic method and hybrid motion/force control

    DİLA TÜRKMEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞENİZ ERTUĞRUL