Türkiye için kısa vadeli elektrik enerjisi talep tahmini
Short-term electricity power demand forecasting for Turkey
- Tez No: 452213
- Danışmanlar: YRD. DOÇ. DR. EBRU YÜKSEL
- Tez Türü: Yüksek Lisans
- Konular: Ekonometri, Enerji, İşletme, Econometrics, Energy, Business Administration
- Anahtar Kelimeler: Türkiye elektrik tüketimi, elektrik talep tahmini, en küçük kareler yöntemi, Electricity consumption of Turkey, electricity demand forecast, least squares method
- Yıl: 2017
- Dil: Türkçe
- Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
- Enstitü: Sosyal Bilimler Enstitüsü
- Ana Bilim Dalı: İşletme Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 125
Özet
Bu çalışmada, Türkiye elektrik talebini etkileyen faktörler belirlenmiş ve elektrik talebini öngören ekonometrik bir model geliştirilmiştir. Yapılan literatür araştırması ve korelasyon testleri sonucunda sıcaklık, nem, güneşlenme süresi, sepet döviz kuru, hane halkı tüketimleri, piyasa takas fiyatı, sistem marjinal fiyatı, kapasite kullanım oranı, sanayi üretim endeksi ve gayri safi yurt içi hasıla (GSYİH) faktörlerinin elektrik tüketimini etkilediği sonucuna varılmıştır. Aralık 2012-Mart 2016 dönemine ait günlük frekansta verilerin kullanıldığı çalışmada, yöntem olarak En Küçük Kareler yöntemi tercih edilmiştir. Analizlerde 2012-2015 yılları arası veriler modelin geliştirilmesi, 2016 yılı ilk çeyreğine ait veriler ise kurulan modelin test edilmesi amacıyla kullanılmıştır. Modele, elektrik tüketimindeki otoregresif yapıyı ve mevsimsel etkiyi yansıtabilmek amacıyla önceki günlere ait elektrik tüketim değerleri ile zaman kukla değişkenleri de dahil edilmiştir. Eviews 8 programı kullanılarak yapılan analizlerde sıcaklık, nem ve bir önceki güne ait elektrik tüketimi değişkenleri ile oluşturulan modelin en başarılı sonucu verdiği görülmüştür. 2016 yılı ilk çeyreği için yapılan öngörüler gerçekleşen elektrik tüketim miktarları ile kıyaslandığında en düşük %0,04 ve en yüksek %7,5 sapma oranları hesaplanmıştır. Kurulan model ile Türkiye elektrik tüketimindeki artış trendi ve mevsimsel dalgalanmalar büyük ölçüde yakalanmıştır.
Özet (Çeviri)
In this study, factors that affect electricity demand in Turkey have been determined and econometric model has been developed for forecasting electricity demand. As a result of literature research and correlation tests, it is concluded that factors such as temperature, humidity, sunshine hours and lightening, highest and lowest temperatures, industrial production index, currency basket, household consumption, market coupling price, system marginal price, capacity utilization rate and gross domestic product (GDP) affect electricity consumption. Data set which consists of daily data that are observed from December 2012 to March 2016, were estimated by Least Squares method. While data between 2012 and 2015 were used to develop the model, data of the first quarter of 2016 were used to test the model in analyses. Previous day electricity consumption values and dummy variables were added to the model for the purpose of reflecting autoregressive structure of electricity consumption and seasonal effect. As a result of analyses that were performed through Eviews 8 by Least Square method, the model that consists of temperature, humidity and previous day electricity consumption gave the most successful prediction result. When forecasts of electricity demand for first quarter of 2016 and actual values are compared, deviations ratio between actual and estimated values are seen to be maximum %7,5 and minimum %0,04. The constructed model substantially caught the rising trend and seasonal fluctuations.
Benzer Tezler
- Yenilenebilir enerji planlaması için bütünleşik çok amaçlı bir karar modeli önerisi
An integrated multi-objective decision model for renewable energy planning
BEYZANUR ÇAYIR ERVURAL
Doktora
Türkçe
2018
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. RAMAZAN EVREN
- Güç sistemlerinin planlanması için enerji talep tahmini
Energy demand forecast for the power systems planning
HARUN GÜLAN
Yüksek Lisans
Türkçe
2010
Elektrik ve Elektronik MühendisliğiFırat ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET CEBECİ
- Türkiye elektrik piyasası kısa dönemli referans fiyat tahmini
Turkish electricity market short term market clearing price forecasting
SERCAN YILDIZ
Yüksek Lisans
Türkçe
2015
Ekonometriİstanbul Teknik ÜniversitesiEnerji Bilim ve Teknoloji Ana Bilim Dalı
PROF. DR. SERMİN ONAYGİL
- Yapay sinir ağları kullanılarak kısa süreli güneş enerjisi tahmini
Short term solar energy prediction by using artifical neural networks
ELA NUR ORUÇ
Yüksek Lisans
Türkçe
2022
Enerjiİstanbul Teknik ÜniversitesiMeteoroloji Mühendisliği Ana Bilim Dalı
DOÇ. DR. AHMET ÖZTOPAL
- Short term electrıcıty consumptıon forecastıng usıng long short-term memory cells
Uzun kisa vadeli̇ hafiza ağlari i̇le kisa vadeli̇ elektri̇k tüketi̇m tahmi̇ni̇
ANIL TÜRKÜNOĞLU
Yüksek Lisans
İngilizce
2019
Enerjiİstanbul Teknik ÜniversitesiEnerji Bilim ve Teknoloji Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BURAK BARUTÇU