Geri Dön

Tüm bina kabuğundan kaybedilen ısı miktarının bina formuna bağlı olarak irdelenmesi için bir model önerisi

Başlık çevirisi mevcut değil.

  1. Tez No: 46334
  2. Yazar: SEMİHA SELAMET
  3. Danışmanlar: PROF.DR. ZERRİN YILMAZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Mimarlık, Architecture
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1995
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 82

Özet

ÖZET Bu çalışmada, tüm bina kabuğundan kaybedilen ısı miktarının bina formuna bağlı olarak belirlenebilmesi için bir yöntem önerilmiş ve bu yöntemin örnek binalar için uy gulaması sunulmuştur. Binalarda kullanılan yapma ısıtma ve iklimlendirme sistemleri nin getirdiği enerji harcamalarını en aza indirebilmek için, binaların mümkün olduğun ca pasif sistemler olarak çalıştırılması gereklidir. Bu çalışma, en az yakıt tüketimini, diğer bir deyişle en az ısı kaybım gerçekleştirecek binaların dizaynında, bina formunun önemle ele alınması gerekli bir dizayn değişkeni olduğunu ortaya koymak üzere yapıl mıştır. Bu çalışma, İstanbul bölgesi için uygulamasını da içeren sekiz ana bölüm ile eklerden oluşmaktadır. Bölüm 1 'de, yapılan çalışmayla ilgili kısa bilgi verilerek amaç anlatılmaktadır. Bölüm 2 'de, binalarda yakıt tüketimini zorunlu kılan faktörlerden iklimsel konfor gereksinmesi ve doğal yollarla ısıtmanın yetersizliği incelenmektedir. Bölüm 3 ' de, yakıt tüketiminde ekonomi sağlanmasını ( enerji korunumu ) ge rekli kılan faktörler açıklanmaktadır. Bölüm 4 'de, enerji korunumu sürecinde etkili olan fiziksel çevresel etkenler ve yapma çevreye ilişkin etkenler anlatılmaktadır. Bu bölümde yapma çevreye ilişkin dizayn değişkenlerinden bina formunun kabuktaki ısı kayıplarına etkisi ve V/A ile Q ( tüm kabuktan kaybedilen ısı miktarı ) ilişkisinin incelenmesi gerekliliği üzerinde du rulmuştur. V/A oranındaki V, binanın ısı kayıplarına karşı korunmuş hacmini, A ise toplam ısı kayıp alanım ifade etmektedir. Bölüm 5 'de, Türkiye 'de ve dış ülkelerde ısıtma enerjisi korunumu konusundaki yönetmelik ve standartlar ele alınmakta ve bu yönetmelik ve standartların karşılaştırılıp değerlendirilmesine yer verilmektedir. Bölüm 6 'da, tüm bina kabuğundan kaybedilen ısı miktarının bina formuna ( V/A 'ya ) bağlı olarak irdelenmesi için kullanılabilecek yöntem açıklanmaktadır. Bölüm 7 'de, tüm bina kabuğundan kaybedilen ısı miktarının bina formuna bağlı olarak irdelenmesi için önerilen model seçilen örnek bina alternatiflerine göre, İstanbul bölgesi için uygulanmaktadır. Bu çalışmada kullanılan yöntem sonucunda elde edilen ve V/A ile Q arasındaki ilişkiyi ifade eden matematiksel bağıntı, binalarda ısıtma ekonomisi konusunda yapıla cak bundan sonraki çalışmalarda uygun ko, yön, saydamlık oram ve V/A kombinezon larının belirlenmesine ve ısıtma ekonomisinde rol oynayan bina formu gibi çok önemli bir dizayn değişkeninin de, bu tür çalışmalarda hesaba katılmasına olanak tanıyacaktır.

Özet (Çeviri)

SUMMARY A MODEL SUGGESTION FOR THE ANALYSIS OF HEAT LOSS THROUGH THE WHOLE BUILDING ENVELOPE DEPENDING ON THE BUILDING FORM In this study, an analysis of total heat loss through the whole building envelope depending on the building form is introduced. Mechanical heating systems are necessary for certain periods of the year in buildings. Buildings should be designed as passive systems which consume mechanical heating energy at the minimum level during the occupancy period. Also building form is an important design parameter which is necessary to realise minimum heat loss. This study consists of eight main chapters. In the first chapter, the importance of the climatic comfort conditions that must be created in buildings and the importance of building form on heat loss through the whole building envelope are discussed. One of the primary functions of a building is to provide the climatic comfort conditions. Provision of the climatic comfort conditions in certain periods of the year can be achieved through mechanical heating and climatisation systems that are being actived by various energy resources. In order to prevent excess heat loss, buildings should be designed as passive heating and climatisation systems. As the most important component of the passive heating and climatisation systems, external walls have to be mentioned. As the building form is one of the most important components with respect to total heat loss of whole building, it has been taken into consideration in detail. In the second chapter, the main factors which make energy utilization compulsary are examined ( climatic comfort requirements and insufficiency of natural heating ) In the third chapter, the factors, which make energy conservation compulsary are given. In the fourth chapter, climatic factors effective on the determination of optimal values of design parameters which are used in the definition of the built environment as passive heating system are classified. -ix-The main climatic factors are; * solar radiation, * external air temperature, * relative humidity and, * air velocity. Solar radiation and outdoor air temperature ( dry bulb temperature ) are two important factors in determination of the climate control performances, because of their heating effects. Therefore, these two factors must be taken into consideration together. Air humidity is mostly defined as relative humidity. The indoor climatic elements are; * indoor air temperature, * mean radiant temperature, * indoor air humidity and * indoor air movement. The optimum combinations of the values of these climatic components will supply; * the best health conditions for the users, * the maximized performance levels of the users, * pleasent climatic environment for the users. The values of the indoor climatic components must be hold in certain values in order to ensure the climatic comfort conditions. These values may be found from the bioclimatic comfort chart. A group of primary design parameters which are related to built environment and affective on energy conservation are as follows. * the selection of area * orientation of building, * building forms, * distance between buildings, * solar radiation and thermophysical properties of the building envelope. Orientation of building is one of the most important factors effecting indoor climate, the solar radiation intensity on the internal surface of building elements varies with orientation. Solar radiation properties of the building envelope are; * absorbtivity, * transmissivity, * reflectivity. For opaque components transmissivity is not valid. -x-The main thermophysical properties of the building envelope are; * overall heat transfer coefficient, * transparency ratio. * time lag and * decrement factor. Total heat loss or heat gain change with building form. Building form can be defined basing on the shape factor of the building, building height, roof type and roof slope. It is possible to determine a lot of building forms which yield same volume, but different facade area. Therefore, different building forms will have different heat loss. From this point of view, the relation between total heat loss ( Q ) and the proportion of building volume ( V ) and heat loss area ( A ), has been examined. Buildings work as wind and sun obstructions for each other. The optimum value of the distance between buildings, changes with slope angle of the site, slope orientation, orientation of buildings and building heights. In the fifth chapter, regulations and standards on the heat energy conservation in Turkey and abroad has been evaluated and compared. In the sixth chapter, a model is proposed, in order to determine the amounts of daily average hourly heat loss through the whole building envelope depending on building forms. This model comprises six main steps : 1. Optimum values of the thermophysical properties are determined. The method for the determination of the optimum values of the thermophysical properties, consists of three main steps: * Determination of the optimum values of the overall heat transfer coefficient for the opaque component * Development of the opaque component alternatives. * Evaluation of the opaque component alternatives from the standpoint of condensation risk. Determination of the optimum values of the overall heat transfer coefficient for the opaque component comprises the following steps : - Gathering the Regional Climatic Data - Selection of the Design Days. To minimize the supplementary mechanical energy demand, the optimum value of the overall heat transfer coefficient for the opaque components should be determined according to the climatic conditions of the predominant period of the region. Instead of the repeating the calculations for each day of the chosen predominant period it is convenient to choose a representative design day. -xi-- Determination of the Indoor Design Conditions. Indoor design conditions can be derived from the comfort conditions. The indoor climatic elements are air temperature, relative humidity, air velocity and inner surface temperatures. The comfort values of the air temperature can be estimated by using the relationship between required value of the inner surface temperature ( Xiyo) and the comfort value of the indoor air temperature ( fc ). The following formula represents the relationship between surface and air temperatures, since it is proper to set the relationship between thermal comfort and building envelope. Xiyo = ti + £ where, C : permissible limit value for the difference between inner surface temperature and the comfort value of indoor air temperature, °C. - Selection of Variation Range and Intervals of the Design Parameters Affecting Indoor Climate. - Computation of the Sol- Air Temperatures for Opaque and Transparent Components. Hourly values of sol-air temperatures influencing the variously orientated opaque components and windows ( Uo and tec respectively ) should be calculated separately. Daily average sol-air temperature for opaque components ( Uoo ) and windows ( teco ) are the arithmetic mean of hourly values. - Calculating the Required Values of the Inner Surface Temperature of the Opaque Component. The weighted average inner surface temperature of the opaque and transparent components relevant to the transparency ratio, should be equal to ( fc - &) for the design days of underheated period. This can be expressed by the following formula : Xiyo = Xoio ( 1 - X ) + Xcio. X where, Xiyo : required value of the inner surface temperature of building envelope, °C x : transparency ratio xn-Hourly values of the inner surface temperature for the transparent component can be calculated by means of the following formula : U = ti+\ko(Uc-ti) - ( Fs. Id Xd + ly.“&) J /*' where, fc : required value of the inner surface temperature of the building envelope, °C ta : hourly values of the inner surface temperature for the transparent component, °C kc : overall heat transfer coefficient of the transparent component, W/ m* C, Kcal/m2höC tec : sol-air temperature for window, ° C Id, ly.direct and diffuce solar radiation intensities on the surface, respectively, W/m2, Kcal/irfh to,ty\ transmissivity of the glass for direct and diffiice solar radiation, respectively Fs : sunlit fraction of the transparent component surface The daily average value ( tew ) is the arithmetic mean of the hourly values. - Determination of the Optimum Values of the Overall heat Transfer Coefficient for the Opaque Component. The optimum value of the overall heat transfer coefficient can be calculated by using the following equation; oi\ ( toio - tf ) k> = ( teoo - tr ) ko : overall heat transfer coefficient of the opaque component, W/m2°C, kcal/m2 h°C Uoo : daily average sol-air temperature for the opaque components,”C fc : comfort value for indoor air temperature, °C 2. Building alternatives are constituted depending on choosen floor area and V/A values. 3. Hourly heat loss per unit area of building envelope is calculated. Under the“real sky”conditions, the amounts of the hourly heat loss per unit area of building envelope can be calculated by basing on the sol-air temperatures. This can be expressed by the following formula : q = ko ( fc ' - teoo ) ( 1- X ) + kc ( fc ' - teco ) X -xin-q : hourly heat loss per unit area of building envelope, W/mz, kcal/m2 h ko : overall heat transfer coefficient of the opaque component, W/m2°C, kcal/m2 h°C kc : overall heat transfer coefficient of the transparent component, W/m20 C, kcal/m2 h°C fc : comfort value for indoor air temperature, °C Xeoo : daily average sol-air temperature for the opaque components, CC Uco : daily average sol-air temperature for the transparent components,0 C 4. The total heat loss through the whole building envelope for varies building alternatives are calculated. This can be expressed by the following formula : Q = ( qi. Ai ) + ( q2. A2 ) + + ( qn. An) + ( qç. At ) qi, q2, qn : hourly heat loss per unit area of building envelope for different orientations of building, W/m2, kcal/m2 h Aı, A2, An : facade areas for different orientations of building, m2 qc : hourly heat loss per unit area of roof component, W/m2, kcal/m2 h At : ceiling area, m2 5. A graphical depiction of heat loss propogated through whole building envelope versus building form is given. 6. First, heat loss graphics are analysed and as result of this relationship between the building form and total heat loss is determined. In the seventh chapter, the methods, described in previous chapters are applied for Istanbul region, in order to determine the appropriate values for design parameters related to built environment. Finally, as the results of this study a graphic system and some formulas are proposed. These graphic system and formulas shows that the relation between total heat loss ( Q ) and the proportion of building volume ( V ) and heat loss area ( A ). We can say that building form is very important design parameter which is necessary to realise minimum heat loss. So, we should considered this relation in order to determine overall heat transfer coefficient of the opaque component. XIV'

Benzer Tezler

  1. Sıcak kuru iklim bölgelerinde enerji korunumu açısından bina dış kabuğu alternatiflerinin bina formuna bağlı olarak belirlenmesi

    Determination of external building envelope alternatives acording to building from energy conservation point of view for hot-dry climatic zone

    NAİME ALAYBAŞI

    Yüksek Lisans

    Türkçe

    Türkçe

    2003

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    DOÇ. DR. GÜL KOÇLAR ORAL

  2. Isıtmada enerji ekonomisi ve yaşam dönem maliyeti açısından uygun bina kabuğu ve işletme biçimi seçeneğinin belirlenmesinde kullanılabilecek bir yaklaşım

    An Approach for the determination of building envelope and operation period of heating system according to energy conservation and life cycle cost

    GÜLTEN MANİOĞLU

    Doktora

    Türkçe

    Türkçe

    2002

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    PROF. DR. ZERRİN YILMAZ

  3. Binalarda ısı kaybı ve maliyet optimizasyonu ile uygun malzeme seçimi

    Selection of materials containing thermal loss and cost optimization

    ALP EREN SANİSOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. GÜL POLAT TATAR

  4. Isı kayıplarının azaltılmasını hedefleyen bina kabuğunun bina formuna bağlı olarak belirlenmesi

    Determination of the building envelope which provides minimum heat loss depending on the building from

    AYÇA KUTLU

    Yüksek Lisans

    Türkçe

    Türkçe

    1999

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    DOÇ. DR. GÜL KOÇLAR ORAL

  5. Enerji etkin bina tasarım parametreleri için uygun değerlerin belirlenmesi: İstanbul örneği

    Determination of appropriate values of energy efficient building design parameters for İstanbul

    EVREN AKGÖZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2004

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    DOÇ.DR. GÜL KOÇLAR ORAL