Geri Dön

Veri madenciliği:Yapay sinir ağı ve doğrusal regresyon yöntemleri ile fiyat tahmini

Data mining: A price prediction with artificial neural network and linear regression models

  1. Tez No: 480764
  2. Yazar: SAİT UĞUR GÜLTEKİN
  3. Danışmanlar: DOÇ. DR. ARZU ORGAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: İşletme, Business Administration
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: Türkçe
  9. Üniversite: Pamukkale Üniversitesi
  10. Enstitü: Sosyal Bilimler Enstitüsü
  11. Ana Bilim Dalı: İşletme Ana Bilim Dalı
  12. Bilim Dalı: Sayısal Yöntemler Bilim Dalı
  13. Sayfa Sayısı: 172

Özet

Veri madenciliği kavramı, finans piyasaları için son derece önemlidir. Çünkü yeterli veri ile bir mal veya hizmetin fiyatı tahmin edilebilir ve o mal veya hizmeti satın almak için harcanan zaman kayda değer miktarda azaltılabilir. Bu tezde ikinci el otomobil piyasasında yer alan araçların fiyatlarının veri madenciliği ile tahmini üzerine uygulama çalışması yapılmıştır. Bu çalışmada veri madenciliği aşamaları kullanılarak problem tanımı yapılmış, veri ön hazırlığı içerisinde veri temizliği yapılmış, veri keşfi ile veriler düzenlenmiş, modellenmiş, oluşturulan model değerlendirmeye alınmış ve model yerleştirme ile veri kullanılacak olan algoritmaların çalışma prensibine uygun hale getirilmiştir. Sonrasında doğrusal regresyon ve yapay sinir ağı yöntemleri ile değerlendirilmiştir. Değerlendirmeden çıkan sonuçlar ile ikinci el otomobil piyasasında yer alan araçların fiyatlarına yönelik tahmini veriler karşılaştırılmıştır. İkinci el araç fiyat tahmininde elde edilen bulgulardan biri, yapay sinir ağları ile yapılan tahminlerin sapma miktarlarının genellikle doğrusal regresyondan daha iyi sonuç verdiğidir. Bir diğer bulgu ise doğru verinin girilmesi ile sapma miktarlarının kayda değer seviyede azaldığıdır.

Özet (Çeviri)

Concept of data mining is crucial for the finance market. Because cost of a good or a service can be estimated and the time which is spended to purchase that good or service can be reduced significantly with sufficient data. In this thesis, an application study was carried out on the estimation of the prices of the vehicles in the second hand car market. In this work with problem definition was made by using data mining stages, data cleaning was done in data preparation, data was arranged by the data exploration, modelling was done, created model was evaluated, and data was adapted by model deployment to the working principles of the algorithms that would be used. Then, it was evaluated by the methods of linear regression and artificial neural network. Results from the evaluation were compared with the estimated data for the prices of the vehicles in the second hand car market. Findings obtained in the second hand vehicle price forecasts show that the amount of the deviations made with artificial neural networks give generally better results than those made with linear regression. Another finding is that the amount of deviation decreases significantly by entering correct data.

Benzer Tezler

  1. Destek vektör regresyon ile hava kirliliği tahmini

    Air pollution prediction using support vector regression

    MAHMUT ESAT EKİNCİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    Endüstri ve Endüstri MühendisliğiEskişehir Osmangazi Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. AHMET SERMET ANAGÜN

  2. Uzaktan algılama verilerinden su kalitesi parametrelerinin tespit edilmesi

    Detection of water quality parameters from remote sensing data

    ERSAN BATUR

    Doktora

    Türkçe

    Türkçe

    2019

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    PROF. DR. MİTHAT DERYA MAKTAV

  3. KPSS sonuçlarının veri madenciliği yöntemleriyle tahmin edilmesi

    Predicting KPSS results using data mining methods

    HÜSEYİN ÖZÇINAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2006

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolPamukkale Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    Y.DOÇ.DR. SEZAİ TOKAT

  4. A comparative study for football analytics with data mining and artificial intelligence techniques

    Veri madenciliği ve yapay zeka teknikleri ile karşılaştırmalı futbol analitiği

    MUSTAFA AADEL MASHJAL AL-ASADI

    Doktora

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞAKİR TAŞDEMİR

  5. LGS İnkılap Tarihi ve Atatürkçülük alt testi doğru sayılarının yapay zeka yöntemleriyle tahmin edilmesi

    Estimating LGS Revolution History and Kemalism subtest correct numbers using artificial intelligence methods

    ENİS HARUN BAŞER

    Doktora

    Türkçe

    Türkçe

    2022

    Eğitim ve ÖğretimKütahya Dumlupınar Üniversitesi

    Türkçe ve Sosyal Bilimler Eğitimi Ana Bilim Dalı

    PROF. DR. BAYKAL BİÇER