Geri Dön

Tespit edilemeyen verilerin analizinde kullanılan yöntemlerin karşılaştırılması

Comparison of methods used in nondetects data analysis

  1. Tez No: 483825
  2. Yazar: GÜLSER ÇALIŞKAN
  3. Danışmanlar: DOÇ. DR. GÜVEN ÖZKAYA
  4. Tez Türü: Yüksek Lisans
  5. Konular: Biyoistatistik, Biostatistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: Türkçe
  9. Üniversite: Uludağ Üniversitesi
  10. Enstitü: Sağlık Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Biyoistatistik Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 66

Özet

Çalışmalarda kullanılan alet, cihaz ya da araçlar bazı durumlarda belirli bir eşik değerin altındaki sonuçları ölçemez. Bu tür verilere tespit edilemeyen veriler denir. Yapılan çalışmalarda istatistiksel analizler için veri setlerinin eksiksiz olması büyük önem taşımaktadır. Bu nedenle tespit edilemeyen verilerin tahmininde kullanılan bazı yöntemlerden bazıları yerine değer atama, sıralı istatistiklerin regresyonu, çoklu değer atama, Tobit regresyon ve tespit edilemeyen veri regresyonudur. Bu yöntemlerin karşılaştırılmasında farklı tespit edilemeyen veri oranı ve örneklem büyüklüklerine göre simülasyon senaryoları oluşturulmuştur. Simülasyon sonucunda. farklı R2 değerlerine sahip her bir yöntem için örneklem büyükleri değiştikçe yöntemlerin hata kareler ortalaması köklerinin değişmediği görülmüştür. Karşılaştırdığımız yöntemler farklı R2 değerlerinde incelendiğinde; R2'nin 0,90 ve 0,70 olduğu durumlarda çoklu değer atama, alt sınır atanması ve Tobit regresyon yöntemlerinde hata kareler ortalaması köklerinin sırasıyla diğer yöntemlere göre daha düşük olduğu görülmüştür. Düşük açıklayıcılık katsayısı ve tespit edilemeyen veri oranı için testpi edilemeyen veri regresyonu alternatif bir yöntemdir.

Özet (Çeviri)

Some machine, devices or tools used in some studies can not measure values below a certain threshold. Such observations are called non-detects data. It is of paramount importance that the data sets are complete for statistical analysis in the studies carried out. For this reason, some methods used for predicting non-detected data are; substitution of values, regression of on order statistics (ROS), multiple imputation, Tobit regression and non-detects data regression. For comparison of these methods, simulation scenarios were established according to the different percentage of non-detects data, sample sizes and coefficient of determination. According to simulation results, the root mean square error of methods did not change as the sample sizes changed for different levels of coefficient of determination. The methods Tobit regression, multiple imputation and substituted with detection limit have lower root mean square error than others while coefficient of determination were 0,90 and 0,70. For coefficient of determination and nondetects data proportion, nondetect data regreesion is an alternative method.

Benzer Tezler

  1. Experimental determination and theoretical prediction of the acoustic properties of the jute and luffa bio-fiber materials

    Jute ve luffa bio-fiber malzemelerinin akustik özelliklerinin deneysel olarak tespiti ve teorik tahmini

    AHMET CİHAN ÖZCAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. KENAN YÜCE ŞANLITÜRK

    DOÇ. DR. HASAN KÖRÜK

  2. Veri madenciliğinde kümeleme analizi yöntemi uygulaması

    A Cluster analysis application on data mining

    TURGAY TUGAY BİLGİN

    Yüksek Lisans

    Türkçe

    Türkçe

    2003

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara Üniversitesi

    Elektronik-Bilgisayar Eğitimi Ana Bilim Dalı

    DOÇ. DR. YILMAZ ÇAMURCU

  3. Kolorektal kanser nedeniyle opere olan hastalarda pelvik radyoterapinin kemik yoğunluğuna etkisi

    Effect of radi̇otherapy on bone mi̇neral densi̇ty i̇n pati̇ents operated for colorectal carci̇noma

    FATMA KURBAN DEMİRCİ

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2017

    OnkolojiSağlık Bilimleri Üniversitesi

    Radyasyon Onkolojisi Ana Bilim Dalı

    UZMAN GÖKHAN YAPRAK

  4. Visualization based analysis of gene networks using high dimensional model representation

    Yüksek boyutlu model gösterilim kullanılarak gen ağlarının görselleştirme tabanlı analizi

    PINAR GÜLER

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Hesaplamalı Bilimler ve Mühendislik Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SÜHA TUNA

  5. Condition monitoring and fault detection for electrical power systems using signal processing and machine learning techniques

    Sı̇nyal ı̇şleme ve makı̇ne öğrenme teknı̇klerı̇ kullanılarak elektrı̇k güç sı̇stemleri ı̇çı̇n durum ı̇zleme ve arıza belirleme

    YASMIN NASSER MOHAMED

    Doktora

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞAHİN SERHAT ŞEKER