Geri Dön

Age and gender prediction from 3d-body and face images

3 boyutlu vücut ve yüz görüntülerinden yaş ve cinsiyet tahmini

  1. Tez No: 503807
  2. Yazar: SEDA ÇAMALAN
  3. Danışmanlar: DOÇ. GÖKHAN ŞENGÜL
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Yazılım Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 139

Özet

İnsanlardan elde edilen biyometrik veriler, insanlar ve çevre hakkında birçok bilgi sağlar. Bu bilgi ulaşım alanları (otobüs, vapur, demiryolu, vb), alışveriş merkezleri, kamu alanları, spor merkezleri, müzeler, süpermarketler, kütüphaneler, vb. gibi birçok alanda kullanılabilir. Birçok alanda dikkate alınan biyometrik veriler cinsiyet, ırk, boy, kilo, göz ve saç rengidir. Bu tez çalışmasında, insanların biyometrik verilerinden yaş aralığını ve cinsiyetlerini tahmin eden bir görüntü işleme tabanlı kombine sistem geliştirilmiş ve bir yazılım aracı haline getirilmiştir. Yüz görüntülerini elde etmek için standart RGB kamera kullanılırken vücut bilgilerini elde etmek için 3D kamera kullanılmaktadır. İnsanların cinsiyet ve yaşını tahmin etmek için istatistiksel örüntü tanıma algoritmaları, derin öğrenme ve yapay sinir ağı tabanlı yaklaşımlar kullanılmıştır. İstatistiki metotlar olarak, LBP ve HOG metotları, özniteliklerin elde edilmesi için yüz görüntülerine uygulanmakta, daha sonra KNN ve SVM sınıflandırıcılar, cinsiyet ve yaş tahmini için kullanılmaktadır. İnsanların yaşını tahmin etmek için yapay sinir ağı da kullanılmıştır ve istatistiksel yöntemler ile yapay sinir ağları arasındaki karşılaştırmalar yapılmıştır. Yaş aralığı tahmini için yüz görüntülerinden istatistiksel yöntemler ile en iyi doğruluk %40,1 olarak elde edilmiştir. CNN derin öğrenmelerinden elde edilen en iyi doğruluk oranı ise %59.1'dir. Yaş ve cinsiyet tahmini için 3D vücut bilgisi de kullanılmıştır. Yapay sinir ağları ile 3D vücut bilgilerinin sınıflandırılması sonucu cinsiyet tahmini başarımı oranını %99,26'ya ve yaş tahmini % 99.41'e yükseltilmiştir. Üst vücut ve alt vücut kısımlarının da insanların yaşının ve cinsiyetininin tahmini için kullanılabileceği değerlendirilmiş ve deneysel çalışmalar yapılmıştır.

Özet (Çeviri)

The biometric data collected from individuals provide an array of information about any population and their environment which can be used in several areas, including transportation (busses, ferries, railways, etc), shopping malls, public areas, sports centers, museums, supermarkets, libraries, etc., not to mention security applications. In detail, this biometric data is related with identity, gender, race, height, weight, and eye and hair color of the person. In this thesis, an image processing-based system to predict the two major aspects, age range and genders of people is developed and integrated as a software tool. A standard RGB camera is used to acquire face images, while a 3D camera is used for body information. To predict the gender and age of each individual, statistical pattern recognition algorithms, deep learning and neural network-based approaches are utilized. For statistical methods, LBP and HOG methods are applied on face images to extract features, then KNN and SVM classification methods are applied as classifiers. Convolutional neural network is used to predict age range of people and the comparison between statistical methods and convolutional neural networks are presented. For age prediction, from face images, statistical methods results yielding a top accuracy of 40.1%; whereas, the best accuracy obtained from CNN deep learning is 59.1%. In addition, 3D body information is used for gender and age prediction by applying statistical and neural network methods. These methods show to improve the gender prediction rate by up to 99.26% and age prediction by 99.41% for the whole-body information. The upper-body and lower-body parts are also examined separately to predict the age and gender of the each individual.

Benzer Tezler

  1. Molecular and functional investigation of disease-associated cytoskeletal proteins protrudin and MYO1H

    Hastalık ilişkili sitoskeletal proteinler protrudin ve MYO1H'nin moleküler ve fonksiyonel araştırılması

    ECE SELÇUK ŞAHİN

    Doktora

    İngilizce

    İngilizce

    2024

    Biyolojiİstanbul Teknik Üniversitesi

    Moleküler Biyoloji-Genetik ve Biyoteknoloji Ana Bilim Dalı

    PROF. DR. ARZU KARABAY KORKMAZ

  2. Genç yetişkin ve adölesanlarda scapular morfometrik ölçümlerle yaş ve cinsiyet tayini

    Age and gender estimation with scapular morphometric measurements in young adults and adolescents

    EDA YİĞİT

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2022

    Adli TıpMarmara Üniversitesi

    Adli Tıp Ana Bilim Dalı

    PROF. DR. MEHMET AKİF İNANICI

  3. Sakroiliak eklem morfometrisi ve varyasyon tipleriile makine öğrenme teknikleri kullanılarak cinsiyet ve yaş tayini

    Sex and age deternination using machine learning techniques with sacroiliac joint morphometry and variation types

    ORHAN GAZİ KOCAMIŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Adli TıpNecmettin Erbakan Üniversitesi

    Anatomi Ana Bilim Dalı

    PROF. DR. AYNUR EMİNE ÇİÇEKCİBAŞI

  4. Yapay zeka destekli FDG PET/BT radyomiks modeli ile karaciğere metastatik kolorektal kanserli hastalarda y-90 cam mikroküreler ile yapılan transarteriyel radyoembolizasyon (TARE tedavisine yanıtın öngörülmesi

    Prediction of response to transarterial radioembolization (TARE ) with yttrium-90 glass microspheres using artificial intelligence assisted FDG PET/CT radiomics model in patients with colorectal cancer metastatic to the liver

    TUĞBA NERGİZ KISSA BOLAT

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2024

    Radyoloji ve Nükleer TıpMarmara Üniversitesi

    Nükleer Tıp Ana Bilim Dalı

    PROF. DR. FUAT DEDE

  5. Automatic semantic segmentation of organs-at-risk and target tumor volume in radiotherapy planning CT images of nasopharyngeal cancer

    Nazofarengeal kanser radyoterapi planlama BT görüntülerinde risk altındaki organların ve hedef tümör hacminin otomatik semantik segmentasyonu

    MURAT YÜCE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    BiyomühendislikAcıbadem Mehmet Ali Aydınlar Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    ÖĞR. GÖR. SEDA NİLGÜN DUMLU

    DOÇ. DR. SİNEM BURCU ERDOĞAN