Geri Dön

Computer vision algorithms for mobile camera applications

Başlık çevirisi mevcut değil.

  1. Tez No: 508536
  2. Yazar: KORAY ÖZCAN
  3. Danışmanlar: Dr. SENEM VELİPAŞALAR
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: İngilizce
  9. Üniversite: Syracuse University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 164

Özet

Özet yok.

Özet (Çeviri)

WEARABLE and mobile sensors have found widespread use in recent years due to their ever-decreasing cost, ease of deployment and use, and ability to provide continuous monitoring as opposed to sensors installed at fixed locations. Since many smart phones are now equipped with a variety of sensors, including accelerometer, gyroscope, magnetometer, microphone and camera, it has become more feasible to develop algorithms for activity monitoring, guidance and navigation of unmanned vehicles, autonomous driving and driver assistance, by using data from one or more of these sensors. In this thesis, we focus on multiple mobile camera applications, and present lightweight algorithms suitable for embedded mobile platforms. The mobile camera scenarios presented in the thesis are: (i) activity detection and step counting from wearable cameras, (ii) door detection for indoor navigation of unmanned vehicles, and (iii) traffic sign detection from vehicle-mounted cameras. First, we present a fall detection and activity classification system developed for embedded smart camera platform CITRIC. In our system, the camera platform is worn by the subject, as opposed to static sensors installed at fixed locations in certain rooms, and, therefore, monitoring is not limited to confined areas, and extends to wherever the subject may travel including indoors and outdoors. Next, we present a real-time smart phone-based fall detection system, wherein we implement camera and accelerometer based fall-detection on Samsung Galaxy S™ 4. We fuse these two sensor modalities to have a more robust fall detection system. Then, we introduce a fall detection algorithm with autonomous thresholding using relative-entropy within the class of Ali-Silvey distance measures. As another wearable camera application, we present a footstep counting algorithm using a smart phone camera. This algorithm provides more accurate step-count compared to using only accelerometer data in smart phones and smart watches at various body locations. As a second mobile camera scenario, we study autonomous indoor navigation of unmanned vehicles. A novel approach is proposed to autonomously detect and verify doorway openings by using the Google Project Tango™ platform. The third mobile camera scenario involves vehicle-mounted cameras. More specifically, we focus on traffic sign detection from lower-resolution and noisy videos captured from vehicle-mounted cameras. We present a new method for accurate traffic sign detection, incorporating Aggregate Channel Features and Chain Code Histograms, with the goal of providing much faster training and testing, and comparable or better performance, with respect to deep neural network approaches, without requiring specialized processors. Proposed computer vision algorithms provide promising results for various useful applications despite the limited energy and processing capabilities of mobile devices.

Benzer Tezler

  1. Camera motion blur and its effect on feature detectors

    Kamera hareket bulanıklığı ve öznitelik vektörlerine etkileri

    FERİT ÜZER

    Yüksek Lisans

    İngilizce

    İngilizce

    2010

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik ve Elektronik Mühendisliği Bölümü

    YRD. DOÇ. DR. AFŞAR SARANLI

  2. Development of a route planning system for mobile robots using visual data

    Görsel veriler kullanarak hareketli robotlar için bir rota planlama sisteminin geliştirilmesi

    IBRAHIM BAAJ

    Yüksek Lisans

    İngilizce

    İngilizce

    2016

    Elektrik ve Elektronik MühendisliğiGaziantep Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. TOLGAY KARA

  3. Mobil robotlar için bir tümyönlü görüş sisteminin tasarımı ve gerçekleştirilmesi

    Design and implementation of an omnidirectional vision system for mobile robots

    SALİM AZAK

    Yüksek Lisans

    Türkçe

    Türkçe

    2009

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. NİHAT YILMAZ

  4. Development of vision-based mobile robot control and path planning algorithms in obstacled environments

    Engelli ortamlarda görüntü tabanlı mobil robot kontrolü ve yol planlama algoritmalarının geliştirilmesi

    MAHMUT DİRİK

    Doktora

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ADNAN FATİH KOCAMAZ

  5. Tek kameralı stereo görüş ile derinlik hesabının yapılması

    Depth estimation using single camera stereo vision

    ALİ MUMCU

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. MURAT HACIÖMEROĞLU