Geri Dön

İnsan sesinin ayırt edici kapasitesinin irdelenmesi

Examination of distinctive capacity of human voice

  1. Tez No: 520878
  2. Yazar: SİNAN ERKAM TANDOĞAN
  3. Danışmanlar: PROF. DR. BÜLENT TAVLI, DOÇ. DR. HÜSREV TAHA SENCAR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Elektronik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 61

Özet

Biyometrik tabanlı kimlik doğrulama sistemleri yaygın olarak parolalar yerine kullanılmaya başlamıştır. Bir mikrofon kullanılarak kolayca elde edilebileceği için ses biyometrisi tüm biyometriler arasında daha popülerdir. Ses biyometrisinin kullanımı gün geçtikçe artmasına rağmen konuşmacı doğrulama sistemlerinin kapasitesi ile ilgili çalışmalar sınırlıdır. Hatta bu alandaki çalışma sonuçları birbirleri ile çelişerek bu konudaki problemleri çözmek yerine konuşmacı sistemlerine olan güvenin azalmasına sebep olmaktadır. Bu nedenlerden ötürü, bu tezde, ses tabanlı kimlik doğrulama sistemlerinin diğer bir değişle konuşmacı doğrulama sistemlerinin kapasiteleri entropi açısından araştırılmıştır. Bu konu üç temel başlık altında incelenmiştir. İlk olarak biyometrik tabanlı sistemler için şimdiye kadar önerilen yöntemler detaylı bir şekilde incelenmiş ve bu yöntemlerin ses tabanlı kimlik doğrulama sistemlerine uygun olup olmadığı da araştırılmıştır. İkinci olarak konuşmacı doğrulama sistemlerinde kullanılan en gelişmiş yöntemlerden bahsedilmiştir. Konuşmalardan çıkartılan özellikler, bu özellikleri temsil etmek için kullanılan modeller ve bu modellerde kullanılan ses tabanlı kimlik doğrulama yöntemleri ayrı ayrı incelenmiştir. Son olarak kullanılan veri kümelerinin kişi ve süre gibi kısıtlarından dolayı açık kaynaklar kullanılarak 20000'den fazla kişiden oluşan veri kümesi oluşturulmuştur. Kapasiteyi ölçmek için en gelişmiş konuşmacı doğrulama sistemi ile uyumlu yeni bir yaklaşım önerilmiş ve bu yaklaşımın matematiksel alt yapısı detaylı bir şekilde açıklanmıştır. Bu yaklaşım farklı durumlarda farklı veri kümeleri kullanılarak incelenmiştir. Son olarak kapasite tahmini ile ilgili yeni araştırma konularından bahsedilmiştir.

Özet (Çeviri)

Biometric-based authentication systems have been begun to be widely used instead of passwords. Because voice can be captured easily by using a microphone, voice is more popular between all biometric modalities. Although the use of voice biometrics is increasing day by day, the studies about capacity of speaker verification systems are limited. Moreover, the results of these studies conflict with each other and which in turn raise doubts reliability of speaker verification systems instead of answering questions. Because of these reasons, in this thesis, the capacity of voice-based authentication systems, in other words, speaker verification systems, is investigated in terms of entropy. The subject has been examined under three main headings. Firstly, proposed approaches up to now for measuring capacity of biometric systems are examined in detail and whether these approaches are suitable for voice-based authentication systems or not was also investigated. Secondly, state-of-the-art methods used in speaker verification systems are overviewed. The features extracted from the speeches, the models used for representation of the features, and voice-based authentication methods for these models are examined separately. Thirdly, because the dataset used in speaker verification systems contains limited number of speakers and speeches, by using open sources a new dataset containing more than 20000 speakers is created. A new approach suitable with state-of-the-art speaker verification system is proposed for measuring capacity and the mathematical background of this approach is explained in detail. This approach is examined in different cases by using different datasets. Finally, new research topics on capacity estimation are mentioned.

Benzer Tezler

  1. Yeni Cami'nin akustik açıdan performans değerlendirmesi

    Evaluation of the acoustical performance of the New Mosque

    EVREN YILDIRIM

    Yüksek Lisans

    Türkçe

    Türkçe

    2003

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    PROF. DR. SEVTAP YILMAZ DEMİRKALE

  2. Advanced techniques and comprehensive analysis in speech emotion recognition using deep neural networks

    Derin sinir ağları kullanarak konuşma duygu tanıma üzerine gelişmiş teknikler ve kapsamlı analiz

    AHMET KEMAL YETKİN

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. HATİCE KÖSE

  3. Voice recognition system with score level fusion methods and embedded system design

    Skor seviyesi füzyon metotları ile ses tanıma sistemi ve gömülü sistem tasarımı

    CİHAN AKIN

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. MÜRVET KIRCI

  4. Image processing for uncontracted ear awareness by using a deep neural network

    Başlık çevirisi yok

    MOHAMMED MAHMOOD ALI ALEZZI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. OSMAN NURI UÇAN

  5. A psychological assessment model on the commercial maritime transport sector

    Ticari deniz taşımacılığı sektörüne ilişkin bir psikolojik değerlendirme modeli

    CENK AY

    Doktora

    İngilizce

    İngilizce

    2024

    Denizcilikİstanbul Teknik Üniversitesi

    Deniz Ulaştırma Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ELİF BAL BEŞİKÇİ