Geri Dön

Interlayer coupling in ferroelectric multilayers: Domain structures and effect of space charges

Başlık çevirisi mevcut değil.

  1. Tez No: 523369
  2. Yazar: MAHMUT BARIŞ OKATAN
  3. Danışmanlar: Prof. Dr. S. PAMİR ALPAY
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Metalurji Mühendisliği, Electrical and Electronics Engineering, Metallurgical Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2010
  8. Dil: İngilizce
  9. Üniversite: The University of Connecticut
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 85

Özet

Özet yok.

Özet (Çeviri)

A theoretical model is developed for n-layered ferroelectric (FE) heterostructures that employs a non-linear Landau-Devonshire formalism coupled with a detailed analysis of the depolarizing fields arising from the polarization mismatch across interlayer interfaces and the electrical fields of localized space charges at such interfaces. It was shown that in the presence of space charges either horizontal (monolithic FE) or diagonal (graded FE) displacement of the hysteresis loops are thermodynamically stable and phase transition temperature is suppressed. Depending on the spatial distribution of space charges phase transition was found to smear out, lift the degeneracy between positive/negative polarization states and result in lower dielectric constant values. Space charge induced built-in polarization, switchable polarization and total polarization of the heterostructures were also investigated. In the vicinity of the phase transition a recovery in switchable polarization was predicted. Dominance of the space charge induced electric fields over the depolarizing electric field was shown to result in electrostatic decoupling of layers. Developing the theory of wedge domain structure in graded ferroelectrics, a quantitative model of domain evolution and dielectric response of compositionally graded ferroelectric multilayers were presented. It was shown that the domain structure adapts itself to the applied electric field via domain modification. As the applied field rises, the domains are swept away layer-by-layer; resulting in a strong non-linear field dependence of the dielectric constant and tunability of the multilayers. It was also shown that by controlling the relative thicknesses of the layers that make up the graded heterostructure, the dielectric response and tunability could be further enhanced.

Benzer Tezler

  1. Theory of spintronics in lateral and vertical heterostructures of monolayer transition–metal dichalcogenides

    Tek katmanlı geçiş–metali dikalkojenlerinin yanal ve dikey heteroyapılarında spintronik teorisi

    MEHMET ARAS

    Doktora

    İngilizce

    İngilizce

    2022

    Fizik ve Fizik MühendisliğiGebze Teknik Üniversitesi

    Fizik Ana Bilim Dalı

    PROF. DR. ÇETİN KILIÇ

  2. Zirkonyum katkılanmış Bi-tabanlı süperiletken seramiklerin mekanik, yapısal ve elektriksel özelliklerinin incelenmesi

    Research on mechanical, structural and electrical properties of zirconium doped Bi-based superconducting ceramics

    EMRE ORHAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Elektrik ve Elektronik MühendisliğiBolu Abant İzzet Baysal Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. RIFKI TERZİOĞLU

    DR. ÖĞR. ÜYESİ ŞENOL KAYA

  3. Current-driven generation and stabilization of magnetic skyrmions

    Manyetik skyrmionların akım-sürümlü üretimi ve stabilizasyonu

    CANER DEĞER

    Doktora

    İngilizce

    İngilizce

    2019

    Fizik ve Fizik MühendisliğiMarmara Üniversitesi

    Fizik Ana Bilim Dalı

    DOÇ. DR. İLHAN YAVUZ

    DOÇ. DR. FİKRET YILDIZ

  4. Microcavity coupled interlayer excitons in MoSe2-WSe2 heterostructures

    Mikrokavite içerisinde entegre MoSe2-WSe2 heteroyapılarında katmanlar arası eksitonlar

    ŞEYMA ESRA ATALAY

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Fizik ve Fizik Mühendisliğiİhsan Doğramacı Bilkent Üniversitesi

    Malzeme Bilimi ve Nanoteknoloji Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ İBRAHİM SARPKAYA