Mechanical properties of body-centred cubic nanopillars
Başlık çevirisi mevcut değil.
- Tez No: 523543
- Danışmanlar: Prof. BRIAN DERBY
- Tez Türü: Doktora
- Konular: Metalurji Mühendisliği, Metallurgical Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: İngilizce
- Üniversite: The University of Manchester
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 176
Özet
Özet yok.
Özet (Çeviri)
Understanding the mechanical properties and deformation characteristics of nanoscale metallic nanopillars and wires is a significant concern for designing reliable small devices that must resist loads in service. This thesis aims to extend understanding of the size dependent behaviour of nanopillars and wires in compression and tension by investigating their mechanical properties and deformation characteristics. Single crystal bcc pillars were fabricated by focussed ion beam (FIB) machining from Fe, Nb, V, Ta, Mo, W and Cr, as well as the ferrite (bcc) and austenite (fcc) components of a duplex stainless steel (DSS). These were tested in compression over a range of test temperatures from 193 K to 393 K using various types of nanomechanical devices. The effect of sample size (pillar diameter) on the strength was investigated and found to increase with decreasing pillar size. In bcc metals, the yield or flow stress, , is inversely proportional with some power of the pillar diameter, d. In bcc metals tested, the power-law exponent, n, were found in the range of between -0.23 to -0.63, showing a less pronounced size effect than found for fcc pillars. The power-law exponent for bcc pillar deformation is also temperature dependent and was found to scale with the ratio of test temperature, Ttest to the critical temperature for screw dislocation mobility, Tc, of the bcc metal (T*= Ttest / Tc). It is notable that the size effect exponent weakens (approaches 0) as T* decreases. However, when the experiments are carried out at temperatures close to or just above Tc, the power-law exponents approaches the value reported in the literature for a range of fcc metals (-1 < n < -0.6). The variation in the power-law exponent observed for bcc metals can be explained by the change in mobility of thermally activated screw dislocations. Their mobility can be modelled by a threshold or lattice friction stress. If this friction stress is introduced into the empirical equation that relates the strength of fcc metal pillars to their diameter, a strong correlation between size effect exponent, the normalised test temperature (T*) and friction stress is obtained. It was found that the friction stress values (Fe, Nb and V) increase as Ttest decreases from 296 to 193 K. When the pillar diameter decreases, the friction stress would be more easily overcome due to the increase in surface-to-volume ratio. The contribution of lattice friction stress on the strength is higher at larger pillars than those for nanopillars. Thus, the divergence between best fit lines has become more apparent at micron-sized pillars, resulting in weaker size effects. Furthermore, the transition in deformation morphology from localized to wavy deformation was only found in Fe pillars, as the Ttest decreased from 296 to 193 K, further revealing that temperature has also strong influence on deformation behaviours of bcc pillars.
Benzer Tezler
- Toz metalurjisi ile üretilmiş Ti-xNB alaşımlarının yüzey özelliklerinin borlama yöntemi ile geliştirilmesi
Improvement of surface properties of Ti-xNB alloys produced by powder metallurgy with boriding
BATUHAN SORUŞBAY
Yüksek Lisans
Türkçe
2023
Metalurji Mühendisliğiİstanbul Teknik ÜniversitesiMalzeme Bilimi ve Mühendisliği Ana Bilim Dalı
PROF. DR. HÜSEYİN ÇİMENOĞLU
ÖĞR. GÖR. FAİZ MUHAFFEL
- Kaynak edilebilen kobalt ve demir esaslı alaşımların yüksek sıcaklıkdaki aşınma davranışları
High temperature wear behaviour of weldable cobalt and iron based alloys
HALİS ÇELİK
- Numerical analysis of additive manufacturing of maraging steel
Yüksek dayanımlı çeliğin 3 boyutlu yazıcı ile imalatının sayısal analizi
MOBIN MAJEED
Yüksek Lisans
İngilizce
2018
Makine Mühendisliğiİstanbul Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. MURAT VURAL
- Hibrit hücrelere sahip kafes yapıların eklemeli imalat ile üretilebilirliğinin ve mekanik özelliklerinin araştırılması
Investigation of manufacturability and mechanical properties of additive manufacturing of lattice structure with hybrid unit cell
HÜSEYİN KIRATLI
Yüksek Lisans
Türkçe
2024
Makine MühendisliğiGazi ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DOÇ. DR. ELMAS SALAMCI
- The effect of the thermomechanical process on microstructure and mechanical properties of (CO25CR15FE20NI40)83AL17 high entropy system
Termomekanik işlemin (CO25CR15FE20NI40)83AL17 sistemindeki yüksek entropili alaşımın mikroyapı ve mekanik özelliklerine etkisi
HÜSEYİN BURAK KOCABAŞ
Yüksek Lisans
İngilizce
2021
Metalurji MühendisliğiEskişehir Teknik ÜniversitesiMalzeme Bilimi ve Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ GÜL İPEK SELİMOĞLU
PROF. DR. HAKAN GAŞAN