Geri Dön

Taşıyıcı duvar panoları ile yapılan prefabrike konut yapısı

Başlık çevirisi mevcut değil.

  1. Tez No: 55544
  2. Yazar: EMRE YILDIRIM
  3. Danışmanlar: DOÇ.DR. TURGUT ÖZTÜRK
  4. Tez Türü: Yüksek Lisans
  5. Konular: İnşaat Mühendisliği, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1996
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 109

Özet

ÖZET Yüksek lisans tezi olacak sunulan bu çalışmada 6 katlı taşıyıcı duvar panolarından oluşan prefabrike bir yapı projelendirilmiştir. Yapı Şekil 1.1. 'de görüldüğü gibi, plandaki boyutları 16.15x19.75 m ve temelden yüksekliği 16.20 m'dir. Ele alınan yapı 2. derece deprem bölgesindedir. Duvar panolarının taşıyıcı tabaka kalınlığı 16 cm'dir. Dış duvar panolarında ve cephe panolarında ayrıca 4 cm kalınlığında taşıyıcı olmayan betonarme kısım vardır. Yapının boyutlandınlmasında yatay yükler esas alınmış ve yatay yükler altındaki hesabı kaynak [4]'e ve [5]'e göre yapılmıştır. Yapı belirlenen deprem yüklerine göre birbirine dik iki doğrultuda bağlantı kirişlerinin çatlamış olması ve çatlamamış olması durumları için ayrı ayrı hesaplanmıştır. Bağlantı IrmşflftrinjTi çatlamış olması durumunda kiriş atalet momenti olarak, homojen kesit atalet momentinin %40'ı, çatlamamış olması durumunda ise kendi atalet momenti alınmıştır. Yapının prefabrike duvar panolar ile teşkil edilmiş olması sebebiyle doğan ek kesit tesirleri hesabı kaynak [l]*e göre yapılmıştır. Döşeme panolarının statik hesaplan, döşeme panolarının mesnetlenme durumlarına bağlı olarak kaynak [ 10]'a ve betonarme hesaplanda kaynak [öj'ya göre yapılmıştır. Temel sistemi olarak radye temel seçilmiş ve döşeme hesaplarına benzetilerek boyutlandınlrmştır. an

Özet (Çeviri)

SUMMARY DESIGN OF PREFABRICATED REINFORCED CONCRETE BUILDING SYSTEM WITH LARGE PANELS The design project of a prefabricated reinforced concrete building system with large panels is presented here in as a master thesis. The building as shown in figure 1.1. which will be used as a residence, is 16.20 meter high from the foundation level and is 19.75*16.15 meter planewise. It has 6 floors. The load carrying system consist of load bearing wall. The effective thickness of the carrying panels are 16 cm. The thickness of the slabs are 13 cm. Design loads were taken from Turkish Standart 498 reference [3] fin: live loads, as well as dead loads. The building is in the second degree at eartquake region. The foundation soil is mainly composed of dense sand and gravel. The rigidity calculation of wall panels for horizontal loads, walls in perpendicalor direction and rigid against shear forces can be assamed to act as flanges. The flange width shall not be greater than the smallest value of the following items : -0.2 H (H being the height of wall above foundation -widht of wall -16 times the thickness of the flange wall -4.00 m -sum of half distances between adjacent panels -sum of distances from the shear wall to any significant opening in the flange wall. Panels with perpendicular panel in one direction only, 1/2 the values stated in the first four items can be used. In this working used effective flange thickness of both sides 16*0* Calculating of lateral loads First of all, the total weight of the building is calculated WrGr+n'Qi xrvGHdead load, Qruve load n is taken 0.30 because the purpose of usage is as a residence W=Wi (The weight of building) If the structure is of regular structure type and the height is less than 75 m. the seismic effects in the structure can be obtainned through a statical solution under the statical equivalent forces. According to this method every structures shall be designed and constructed to resist minimum total lateral seismic force assumed to act nonconcurrently in the direction of each of the main axes of the structure in accordance with the following formula: F=C*W where C=Co*K*S*I Co is a actor which accounts for the seismic intensity of site and the seismic hazard exposure K is structural type factor I the coefficient of structure importance S is structural spectrum factor, which depends on the period of the first made of the structure and the main period of the ground soil. 1 0.80+T-T0 S Figure 1. Fictive System k depends on the flexural rigidity of the beams connected the shear walls the each other or to the columns in that storey. In this fictive system the bending moments Mpi which is the shear wall moment just over the floor level. These moments are considered as unknown X4 the following lineer equations of system in a number equal to the number of stories. Sy.1 JCw+i OyJCff O^h-i. JCifj+ Sy) =0 (İ =1,2, N) From these equations the unknows M^Xi are solved and the other internal forces are calculated. Calculation wim respect to vertical loads smilar to the situation in conventional reinforced concrete buildings, vertical loads are transmitted to load bearing walls and beams by floor slabs. At the design of prefabricated buildings consructed with large panels, the following conditions must be also satisfied: 1) Vertical joints of two wall panels must be placed in a conjunction of these panel with a perpendicular one. 2) In a slab covering a volume at most two junctions may exist Different panels or parts of a single unit such as a shear wall may be connected in various ways. The connection first of all, shoulld fulfill requirements related to transfer of forces and moments, acceptable deformations and rotations arising in the structures. In some places, connections should permit acceptable deformations and rotations arising in the structures. In some places, connections should permit acceptable deformations and movements, and in other places as in cast-in-place xviconcrete, they should mtmitnin the rigidity of the structure to secure the monolithic conditions. All calculations of six chapter were done to use TS9967[1] In the design of beams and load bearing walls with respect to vertical loads, the eccentricity of the load must be taken into consideration. In the design of load bearing wall, the effects of eccenticity of walls on top of each other as a result of faulty erection or foulty production are olso taken into cosideratiorL Stresses on battom edge of walls with vertical distrubuted loads acting on top can be calculated by equilibrium equations with the assumption that stress distribution is uniform in wall thickness and linear along the wall. N M c= - ± - F W Since in all structurel systems the floors must functions as a diaphragam, tensile ties must be inserted and anchored with each other: i. around the building at each floor, on shear walls and cores, and inside floor elements. ii. on load bearing walls and the rigraty walls vertical tie system horizontal tie system vertical connection horizontal connection Figure 2. He System Tensile ties also resist tensile forces due to restrained volume changes and differential settlement The strainned against differantial settlement and lateral forces stem mainly from the tendency of load bearing and shear walls to exhibit integral behavior in vertical connections. xvnLoad bearing and shear-wall panels contain vertical reinforcement at edges of panels and opemgs such as doors and windows. These reinforcement elements are properly apliced to those of upper and lower panels at joints. The horizontal joints in between the panels may experience strong shear forces as the number of floors and earthquake effects increases therfbre, these joints must contain sufficient amount of shear keys or equivalent amount of mechanical attachments and vertical reinforcements to bear tensile forces acting these points. The splicing of reinforcements may be lapped or welded. The most important function of the tie system is that in case a loadbearing panel loses its carriyg capacity abnormally, it provides that the panel above act as a simple beam or cantilever. Horizontal connections are critical points in large panel construction. Correctly detailed horizontal connection not only complates the structure, but also provides fast erection of panels, ease in placement of reinforcing bars and concrete in the connection, In vertical load transfer zone of the horizontal connections, no utility pipe or no incorporation should be placed. Vertical connections transfer vertical shear force between the panels. xvni

Benzer Tezler

  1. Taşıyıcı duvar panoları ile yapılan prefabrike konut yapısı

    Design of prefabricated reinforced concrete building system with large panels

    MEHMET KAHRAMAN

    Yüksek Lisans

    Türkçe

    Türkçe

    1999

    İnşaat MühendisliğiSakarya Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. SALİH ZEKİ BULUT

  2. Prefabrike büyük duvar panoları ile yapılan konut yapısı

    Design of a prefabricated reinforced concrete building system with large panels

    M.CİHAN HACIMUSTAFAOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    1997

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    Yapı Ana Bilim Dalı

    DOÇ. DR. TURGUT ÖZTÜRK

  3. Yeni Cami'nin akustik açıdan performans değerlendirmesi

    Evaluation of the acoustical performance of the New Mosque

    EVREN YILDIRIM

    Yüksek Lisans

    Türkçe

    Türkçe

    2003

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    PROF. DR. SEVTAP YILMAZ DEMİRKALE

  4. Kuru yapım sistemleri ve yapılarda alçı pano uygulaması

    Dry construction systems and gypsum board application in buildings

    MUHARREM MUTLU KIZILDELİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2002

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    DOÇ. DR. MUSTAFA ERKAN KARAGÜLER

  5. Prefabrike betonarme panolu yapıların teşkili, tasarımı ve maliyet analizi

    Design and formation of the prefabricated reinforced concrete panel structures with cost optimization

    FERDİ KARGILI

    Yüksek Lisans

    Türkçe

    Türkçe

    2005

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DOÇ.DR. TURGUT ÖZTÜRK