Geri Dön

Privacy preserving rule-based classifiers using modified artificial bee colony optimization algorithm

Değiştirilmiş yapay arı kolonisi optimizasyon algoritmasını kullanan gizlilik koruyuculu kural-tabanlı sınıflandırıcılar

  1. Tez No: 562824
  2. Yazar: EZGİ ZORARPACI
  3. Danışmanlar: PROF. DR. SELMA AYŞE ÖZEL, PROF. DR. YÜCEL SAYGIN
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Mühendislik Bilimleri, Computer Engineering and Computer Science and Control, Engineering Sciences
  6. Anahtar Kelimeler: Diferansiyel olarak gizli kural tabanlı sınıflandırıcılar, Yapay Arı Kolonisi Optimizasyonu, Differentially Private Rule-Based Classifiers, Artificial Bee Colony Optimization, Privacy Preserving Classification
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: Çukurova Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Bilimleri Bilim Dalı
  13. Sayfa Sayısı: 155

Özet

Veri madenciliğinde verilerin gizliliğin korunması yeni bir araştırma alanıdır. Gizlilik korumalı veri madenciliğinin amacı veri üzerinde veri madenciliği tekniklerini gerçekleştirirken aynı zamanda da kişilerin hassas bilgilerinin sızmasını engellemektir. Sınıflandırma veri madenciliğinin en çok çalışılan konularından biridir ve bu nedenle gizlilik koruyuculukorumalı veri madenciliği alanında da popüler olmuştur. Diferansiyel gizlilik, gizlilik sızıntısının oranını ϵ parametresi kullanarak belirleyen ve araştırmacılara hassas bilginin bulunduğu veriyi analiz etme imkânı sağlayan güçlü bir gizlilik garantisidir. Literatürde Ant-Miner gibi meta-sezgisel kullanan kural tabanlı sınıflandırıcılar oldukça başarılı olmasına rağmen, bu algoritmaların diferansiyel gizlilik ile ilgili herhangi bir uygulaması gerçekleştirilmemiştir. Bu nedenle, bu tezde kural tabanlı sınıflandırıcıların meta-sezgisel algoritmalar kullanılarak diferansiyel gizlilik ile uygulamaları gerçekleştirilmektedir. Önerilen kural tabanlı sınıflandırma algoritmaları küçük ϵ değerleri için (ϵ=1) literatürde bulunan diğer sınıflandırma yöntemlerinden daha iyi bir performans göstermiştir.

Özet (Çeviri)

Privacy preserving data mining is a hot research field for data mining. The aim of privacy preserving data mining is to prevent the leakage of the sensitive information of individuals while performing data mining techniques. Classification task is one of the most studied fields in data mining hence in privacy preserving data mining as well. On the other hand, differential privacy is a powerful privacy guarantee that determines privacy leakage ratio by using ϵ parameter and enables researchers to mine data which includes sensitive information. Although the success of the rule-based classifiers using meta-heuristics such as Ant-Miner etc. in data mining has been demonstrated, any implementation of these classification algorithms with differential privacy has not been proposed in the literature to our best knowledge. Motivated by this, implementations of the rule-based classification algorithms by using meta-heuristics with differential privacy are performed in this thesis. According to the experimental results, the proposed rule-based classification algorithms outperform the other classification techniques in the literature for low ϵ parameters (i.e., ϵ=1).

Benzer Tezler

  1. Privacy preserving data mining

    Kişisel bilgilerin gizlenmesi veri madenciliği

    AFRAH FAREA

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ KARCI

  2. Privacy-preserving XGBoost inference with homomorphic encryption

    Homomorfik şifreleme ile gizlilik korumalı XGBoost tahmin algoritması

    ŞEYMA SELCAN MAĞARA

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSabancı Üniversitesi

    Bilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı

    PROF. DR. ERKAY SAVAŞ

  3. Privacy preserving data analysis for information systems

    Bilgi sistemleri için gizliliği koruyan veri analizi

    BARIŞ YILDIZ

    Doktora

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. RECEP ALP KUT

  4. Blockchain in healthcare: Smart contracts to improve dental healthcare for children in mixed dentition period

    Sağlıkta blockchaın: Karma diş dönemindeki çocuklar için diş sağlığını iyileştirmeye yönelik akıllı sözleşmeler

    WILDAN MOHAMMED ARABY AL RUBAYE

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. SEFER KURNAZ

  5. Privacy-preserving data sharing and utilization between entities

    Kurumlararası gizliliği koruyan veri paylaşımı

    DİDEM DEMİRAĞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ERMAN AYDAY