Geri Dön

Telekomünikasyon sektöründe müşteri kaybı analizi

Churn analysis in telecommunication sector

  1. Tez No: 567940
  2. Yazar: MEHMET SABRİ KUNT
  3. Danışmanlar: DR. ÖĞR. ÜYESİ BÜLENT TUĞRUL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Ankara Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 79

Özet

Müşteri kaybı analizi, mevcut kullanıcıların analiz edilerek, hizmet veya ürünü kullanmayı bırakma ihtimali yüksek olan müşterilerin tespit edilmesi işlemidir. Potansiyel kitle tespit edildikten sonra, pazarlama ve müşteri ilişkileri departmanları ile ortak çalışma yapılarak, müşteriyi memnun edecek kampanya veya promosyon çalışmalarının yapılmasına zemin hazırlanır. Müşteri kaybı analizi, telekomünikasyon, bankacılık, online ticaret gibi müşteri sayısı ile gelir miktarının doğru orantılı olduğu sektörlerinde hayati öneme sahiptir. Bu çalışmada genel olarak ürün veya hizmeti kullanmayı bırakma ihtimali yüksek olan müşterilerin, veri madenciliği altında çalışan karar ağaçları ve onun gelişmiş bir versiyonu olan, random forest yöntemleri ve xgboosting yöntemi ve ayrıca yaygın olarak kullanılan sınıflandırma yöntemlerinden olan naif bayes ve lojistik regresyon yöntemleri ile nasıl tespit edileceği incelenmiştir.

Özet (Çeviri)

Customer loss analysis is the process of identifying customers who are likely to quit using the service or product by analyzing existing users. Once the potential customers are identified, a joint study is carried out with marketing and customer relations departments to prepare the campaign or promotion activities that will satisfy the customer. Customer loss analysis is so important for the sectors that number of customers and income is directly proportional such as telecommunications, banking, online trade. In this study, generally we analyze how to determine the customers who are likely to stop using the product or service by using of decision trees method that is a part of data mining area and Random Forest method that is a advanced version of decision trees and xgboosting as well as the methods of naive bayes and logistic regresyon, one of the commonly used classification methods.

Benzer Tezler

  1. Telekomünikasyon sektöründe müşteri kaybı yönetimi için meta sezgisel tabanlı karar destek sistemi

    Meta-heuristic based decision support system for customer churn management in telecommunications sector

    MİHRİMAH ÖZMEN

    Doktora

    Türkçe

    Türkçe

    2017

    Endüstri ve Endüstri MühendisliğiErciyes Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. EMEL KIZILKAYA AYDOĞAN

  2. Ağaç temelli makine öğrenmesi yöntemleri ile telekomünikasyon sektöründe müşteri kayıp analizi

    Customer churn analysis in the telecommunications sector using tree-based machine learning methods

    BAŞAK CEREN SEÇİK GÖÇER

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    MatematikYıldız Teknik Üniversitesi

    Matematik Mühendisliği Ana Bilim Dalı

    PROF. DR. İBRAHİM EMİROĞLU

  3. Telekomünikasyon sektöründe müşteri segmentasyonu ve müşteri kayıp analizi

    Customer segmentation and customer churn analysis in the telecommunication sector

    RAMİS BAŞKAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilim ve TeknolojiHaliç Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ÜLVİYE HACIZADE

  4. Sigortacılık sektöründe makine öğrenmesi ile müşteri kaybı analizi

    Customer churn analysis with machine learning in insurance sector

    HANDE ESİN AKYİĞİT

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilişim Sistemleri Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ TUĞRUL TAŞCI

  5. Telekomünikasyon sektöründe aboneliklerini iptal edecek müşterilerin yapay öğrenme yöntemleri ile tahmin edilmesi

    Churn prediction in telecommunication sector with machine learning methods

    AYŞE ŞENYÜREK

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Endüstri ve Endüstri MühendisliğiYıldız Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SELÇUK ALP