Geri Dön

Renkli görüntülerin uzamsal alanda zenginleştirilmesi

Color images enhancement in spatial domain

  1. Tez No: 568991
  2. Yazar: AYBÜKE BABADAĞ
  3. Danışmanlar: DR. ÖĞR. ÜYESİ ÖMER KAAN BAYKAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Konya Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 100

Özet

Sayısal görüntü işleme uygulamalarında, görüntülerdeki belirsiz detayların daha açık hale getirilmesi ve istenilen özelliklerin vurgulanması amacıyla görüntü zenginleştirme algoritmaları sıklıkla kullanılmaktadır. Bu tez çalışmasında düşük kontrasta sahip renkli görüntülerin kontrastlarının, görüntüde herhangi bir yapay görünüme sebep olmadan zenginleştirilmesi hedeflenmiştir. Çalışmada görüntü zenginleştirme, bir optimizasyon problemi olarak ele alınmıştır. Günlük hayatta karşılaşılan optimizasyon problemlerinin çözümünde başarılı sonuçlar vermesi sebebiyle, metasezgisel algoritmalar tercih edilmiştir. Ayrıca, gerçek hayat problemlerinde genellikle birden fazla amacın olması sebebiyle, çok amaçlı optimizasyon algoritmalarından da faydalanılmıştır. Bu çalışmada düşük kontrastlı renkli görüntülerin kontrastları, tek ve çok amaçlı yapay arı kolonisi algoritması, parçacık sürü optimizasyonu algoritması ve genetik algoritmadan faydalanılarak zenginleştirilmiştir. Çalışmada sekiz adet renkli standart test görüntüsü kullanılmıştır. Çalışmada kullanılan algoritmalar test görüntülerine uygulandıktan sonra elde edilen sonuçlar; pik sinyal gürültü oranı, yapısal benzerlik indeksi, kontrast geliştirme indeksi ve renk zenginleştirme faktörü kalite metrikleriyle değerlendirilmiştir. Böylece görüntü zenginleştirme işleminde tek ve çok amaçlı optimizasyon uygulamalarının etkisi gözlemlenmiştir. Elde edilen sonuçların sayısal ve görsel değerlendirilmeleri neticesinde, çalışmada kullanılan tek ve çok amaçlı algoritmalarla, görüntülerde yapay görünüme sebebiyet vermeden kontrastlarının zenginleştirildiği gözlemlenmiştir.

Özet (Çeviri)

In digital image processing applications, image enhancement algorithms are often used to bring out details that is vague and emphasize certain features in an image. The aim of this thesis is to enhance the contrast of low contrast color images without causing any artificial effect on images. In this study, image enhancement is considered as an optimization problem. Due to the effective performance in reel world optimization problems metaheuristic algorithms are preferred in this study. Also because the reel world problems generally have multiple objectives multi objective optimization algorithms are utilized. In this study, contrasts of low contrast color images are enhanced by utilizing single and multi objective genetic algorithm, particle swarm optimization algorithm and artificial bee colony algorithm. In this study, eight standard color test images are used. After the algorithms used in this study are applied to the test images the obtained results are evaluated based on the quality metrics; peak signal to noise ratio, structural similarity index metric, contrast improvement index and color enhancement factor. Thus the effect of both single and multi objective optimization techniques on image enhancement is observed. As a result of both visual and objective evaluations of obtained results, it is observed that contrasts of images have improved by applying single and multi objective image enhancement algorithms that used in this study without causing any artificial appearance.

Benzer Tezler

  1. Sayısal renkli görüntüler için uzamsal düzlem yöntemleri kullanan yeni bir hibrit steganografi algoritması

    A new hybrid steganography algorithm using spatial domain methods for digital color images

    MURAT UZUN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Bilişim Sistemleri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SERDAR SOLAK

  2. Change detection of buildings from high resolution satellite imagery and existing map data using object based classification

    Nesne tabanlı sınıflandırma ile yüksek çözünürlüklü uydu görüntüleri ve mevcut harita verilerinden bina değişimlerinin tespiti

    FATEMEH SAFARLOU

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Jeodezi ve FotogrametriHacettepe Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    PROF. DR. MUSTAFA TÜRKER

  3. Ortalama kayma algoritmasının geliştirilerek görüntü dizilerinde hareketli nesne takibi ve görüntü kesimleme amaçlı kullanılması

    Improving mean-shift algorithm for object tracking and image segmentation

    MUSTAFA ÖZDEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2005

    Elektrik ve Elektronik MühendisliğiKırıkkale Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    Y.DOÇ.DR. EDİZ POLAT

  4. Image segmentation techniques via robust hypothesis testing

    Kararlı hipotez testi ile görüntü bölütleme teknikleri

    SHAHIN MAMMADOV

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik MühendisliğiAdana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HÜSEYİN AFŞER

  5. Sentetik ve doğal görüntülerde histograma dayalı görüntü renksizleştirme

    A histogram based decolorization in synthetic and natural images

    DİLARA GÖRMEZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ORHAN AKBULUT