Geri Dön

Makine öğrenme teknikleri ile Türkiye'nin doğalgaz enerji tüketiminin tahminlenmesi

Estimation of Turkey's natural gas consumption with machine learning techniques

  1. Tez No: 589789
  2. Yazar: OSMAN EMİN ERDEM
  3. Danışmanlar: DOÇ. DR. SAADETTİN ERHAN KESEN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Konya Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Endüstri Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 60

Özet

Teknolojinin ilerlemesi ve dünya nüfusunun giderek artması enerjiye olan ihtiyacın her geçen gün artması anlamına gelmektedir. Dünyadaki kullanılabilir enerji kaynaklarının en önemlilerinden biri doğalgazdır. Türkiye'nin doğal ve yeraltı kaynaklarının sınırlı olması nedeniyle enerjide dışa bağımlılığın yüksektir. Bu sebeple satın alınan doğalgazın etkin ve verimli kullanılabilmesi ve önümüzdeki yıllara yönelik güvenilir enerji politikaları geliştirebilmek ancak ülkemizin önümüzdeki yıllardaki doğalgaz tüketiminin doğru tahmin edilmesi ile mümkündür. Bu çalışmada 2010-2018 yılları arasındaki 8 yıllık aylık bazda Türkiye'nin doğalgaz tüketim verilerini kullanarak makine öğrenmesi teknikleri ile tahminleme yapılmıştır. Yapay sinir ağları, rastgele orman ağacı, regresyon, zaman serileri, çok mevsimli zaman serileri tekniklerinin doğalgaz tüketiminin tahmin edilmesinde birbirleri ile olan performansları karşılaştırılmıştır. Deneysel sonuçlar yapay sinir ağlarının 5 metot arasında en düşük ortalama hata kareleri değerine sahip olduğunu ve regresyon tekniğinin yapay sinir ağlarının ardından ikinci en iyi teknik olduğunu göstermiştir. Beş teknik arasında en kötü performansı zaman serileri göstermiştir.

Özet (Çeviri)

Technological advancements coupled with growing world population require the increasing need of energy. Natural gas is one of the most important usable energy resources. Turkey is with high external dependency on energy as it has its own limited natural and underground energy resources. Thus, in order to effectively and productively use of natural gas purchased from foreign countries and to make reliable and robust energy policies for the years ahead, it is crucial to make a reasonable and plausible prediction for natural gas consumption of Turkey. In this paper, we estimate the natural gas consumption using machine learning techniques on the basis of real monthly data representing natural gas consumption of Turkey between the years 2010 and 2018. The performances of machine learning techniques involving Artificial Neural Networks, Random Forest Tree, Regression, Time Series and Multiple Seasonality Time Series are compared in predicting the natural gas consumption of Turkey. Experimental results show that among the five techniques, artificial neural networks produce the best estimation, having the lowest mean square errors, followed by regression method. Time series shows the worst performance among all the techniques.

Benzer Tezler

  1. Essays on electricity price modeling and forecasting

    Elektrik fiyatlarının modellenmesi ve tahmini üzerine makaleler

    UMUT UĞURLU

    Doktora

    İngilizce

    İngilizce

    2019

    İşletmeİstanbul Teknik Üniversitesi

    İşletme Mühendisliği Ana Bilim Dalı

    PROF. DR. OKTAY TAŞ

  2. Makine öğrenimi teknikleri ile veriye dayalı kısa vadeli doğal gaz talep tahmini

    Data-based short-term natural gas demand forecasting with machine learning techniques

    MUSTAFA ÇELEBİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Endüstri ve Endüstri MühendisliğiGazi Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HAKAN ÇERÇİOĞLU

  3. The effect of global climate change on hydroelectric power plants and energy production in the Central Black Sea basin

    Küresel iklim değişikliğinin Orta Karadeniz havzasında hidroelektrik santraller ve enerji üretimi üzerine olan etkisi

    HESHAM ALRAYESS

    Doktora

    İngilizce

    İngilizce

    2021

    İnşaat MühendisliğiOndokuz Mayıs Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ASLI ÜLKE KESKİN

  4. An intelligent system for ranking e-commerce customer reviews to boost engagement

    Müşteri etkileşimini artırmak için e-ticaret müşteri yorumlarını sıralayan akıllı sistem

    ERTUĞRUL YÜCEL

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Mühendislik Bilimleriİstanbul Teknik Üniversitesi

    İşletme Mühendisliği Ana Bilim Dalı

    PROF. DR. TOLGA KAYA

  5. A challenge to copyright: Text and data mining

    Telif hukukunda metin ve veri madenciliği

    ESMA MUHEYNE DOĞAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Hukukİstanbul Medeniyet Üniversitesi

    Özel Hukuk Ana Bilim Dalı

    DOÇ. DR. CAHİT SULUK