Geri Dön

Scale-resolved and stochastic approaches for noise prediction in duct singularities

Başlık çevirisi mevcut değil.

  1. Tez No: 597469
  2. Yazar: UĞUR KARBAN
  3. Danışmanlar: PROF. WOLFGANG POLIFKE
  4. Tez Türü: Doktora
  5. Konular: Enerji, Energy
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: İngilizce
  9. Üniversite: Technische Universität München
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 163

Özet

Özet yok.

Özet (Çeviri)

This study focuses on the numerical investigation of the broadband noise generated by a low- Mach-number flow passing through ducted diaphragms. The goal of the study is to develop a fast and accurate tool based on a stochastic noise prediction method. Various noise prediction techniques including a direct approach and different hybrid approaches were implemented and were compared against experimental data. The experimental data was acquired performing induct aeroacoustic measurements on the test campaign installed in the anechoic chamber of the von Karman Institute for Fluid Dynamics. The measured data was post-processed using a multiport method to identify the active source. The scale-resolved flow data is provided from compressible Large Eddy Simulation. The applicability and the accuracy of a hybrid approach that combines Lighthill's analogy and Green's function for sound generation and radiation, respectively, are investigated. A tailored Green's function is proposed using the mode-matching technique to account for the scattering of single and tandem diaphragms in cylindrical ducts. Unsteady flow data required for the noise prediction approach is provided using the LES data, and alternatively through a stochastic method. The latter, namely 'Stochastic Noise Generation and Radidation' (SNGR) method, synthesizes turbulent velocity field satisfying the two-point statistics of a target mean flow. A grouping scheme for the noise sources based on the octree structure is introduced to minimize the memory requirements and further to reduce the computational cost. Comparison of the SNGR results and the LES predictions and measured data revealed that promising noise predictions can be achieved using the SNGR method given a proper anisotropy model and the spectral decay rate.

Benzer Tezler

  1. Yatırım kararlarının değerlemesinde reel opsiyonları bilişim teknolojileri yatırım uygulaması

    Valuation of investment decisions with real options: Information technologies investment practice

    SELÇUK ALTAN ÖZOĞUL

    Doktora

    Türkçe

    Türkçe

    2006

    İşletmeİstanbul Teknik Üniversitesi

    İşletme Ana Bilim Dalı

    PROF. DR. BURÇ ÜLENGİN

  2. Toplam faktör verimliliğinin büyümesi, bileşenleri ve makroekonomik belirleyicileri: OECD ülkeleri için bir analiz

    Growth, components and macroeconomic determinants of total factor productivity: An analysis for OECD countries

    NADİDE YİĞİTELİ

    Doktora

    Türkçe

    Türkçe

    2021

    EkonomiGazi Üniversitesi

    İktisat Ana Bilim Dalı

    PROF. DR. FAHRİYE ÖZTÜRK

  3. Altızgara Modellemede Rassal Döngüler

    Stochastic Eddies in Subgrid Modelling

    RUKİYE KARA

    Doktora

    Türkçe

    Türkçe

    2015

    MatematikMimar Sinan Güzel Sanatlar Üniversitesi

    Matematik Ana Bilim Dalı

    DOÇ. DR. MİNE ÇAĞLAR

  4. Türkiye enerji sektörünün stratejik konumu ve yapay sinir ağı modelleriyle enerji tüketiminin tahmini

    Turkish energy sector strategic position and neural network prediction of energy consumption models with

    HATİCE GENÇ KAVAS

    Doktora

    Türkçe

    Türkçe

    2019

    EnerjiSivas Cumhuriyet Üniversitesi

    İşletme Ana Bilim Dalı

    PROF. DR. HÜDAVERDİ BİRCAN

  5. Ultimate-fast all-optical switching of a microcavity

    Başlık çevirisi yok

    EMRE YÜCE

    Doktora

    İngilizce

    İngilizce

    2013

    BiyoteknolojiUniversity of Twente

    PROF. DR. WILLEM VOS

    DR. GEORGIOS CTISTIS