Geri Dön

Robustness of fingerprint verification algorithms against synthetic deformations

Parmak izi eşleştirme algoritmalarının sentetik bozulmalara karşı dayanıklılığı

  1. Tez No: 601909
  2. Yazar: SİNEM CANTÜRK
  3. Danışmanlar: DR. ÖĞR. ÜYESİ NESLİ ERDOĞMUŞ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: İzmir Yüksek Teknoloji Enstitüsü
  10. Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 52

Özet

Parmak izi tanıma, insanların tanımlanmasında kullanılan biyometrik tekniklerden biridir. Parmak izi tanıma konusundaki gelişmeler ve araştırmalar, parmak izi tanıma ve doğrulama senaryolarının geliştirilmesinde büyük öneme sahiptir. Parmak izi tanıma sistemlerinin hemen hemen her yerde kullanılması ve kolayca erişilebilir olması, bu alanlarda yapılan araştırmalarla doğrudan orantılıdır. Bir yüzey üzerinde parmak izi alırken, büyük olasılıkla bazı sorunlar olacaktır ve bu durum parmak izi tanıma performansını etkiler. Güvenli bir tanıma sistemi için bu tür sorunların sisteme nasıl tepki vereceği önemlidir. Tezin amacı sadece mevcut özellik tabanlı parmak izi tanıma tekniklerinin değil aynı zamanda derin öğrenme, görüntü işleme temeli alan parmak izi tanıma tekniklerinin sonuçlarını elde etmek ve karşılaştırmaktır. Önemli olan, parmak izi doğrulama algoritmalarının sentetik olarak bozulmuş parmak izi görüntülerinin koşulları altında nasıl sonuçlar verdiğidir. İki farklı doğrulama sistemi geliştirdikten sonra, sistem sonuçlarını çarpık görüntülerle ve düzgün görüntülerle karşılaştırmaktır. Parmak izi görüntüsü üzeri harici olarak deformasyon etkisi olan ve olmayan iki yöntemin sonuçları karşılaştırılır. İlk sistem, görüntüleri parmak izi üzerindeki özelliklerle karşılaştıran özellik tabanlı bir tanıma sürümüdür. Bunu yapmak için ORB ve SIFT teknikleriyle iki farklı tanımlayıcı kullanılır. Bu konvansiyonel yaklaşımda, eşleşen bir parça da vardır ve bu kısım Brute Force Matcher ve Yaklaşık En Yakın Komşu (ANN) eşleştiricisi olarak adlandırılan iki farklı eşleştirme algoritmasıyla denenir. İkinci algoritma, ham parmak izi görüntülerini modele giriş olarak alarak parmak izi görüntülerini eşleştirmek için tamamen sinir ağı modelinin sonucunu alarak eşleştirme sonuçlarını belirler. Bu çalışma, derin sinir ağı yaklaşımının hem orijinal veri setinde hem de veri setinin çarpık versiyonlarında daha sağlam ve daha hızlı sonuçlar verdiğini ortaya koydu.

Özet (Çeviri)

Fingerprint recognition is one of the biometric techniques used for the identification of humans. The developments and research about fingerprint recognition to date are of great importance in advancing fingerprint recognition and verification scenarios. The fact that fingerprint recognition systems are used almost everywhere and are easily accessible is directly proportionate to a large amount of research in these areas. During the acquisition of the fingerprint, there are many environmental factors that may affect the quality of the print and eventually, its ability to be recognized. For a fingerprint recognition algorithms, it is important to handle the difficulties that arise due to those variations. The aim of the thesis is to obtain and compare the results of not only an existing feature-based fingerprint recognition techniques but a fingerprint recognition technique that uses deep learning. The main focus is on how fingerprint verification algorithms behave under the circumstances of synthetically distorted fingerprint images. After developing two different verification systems, the goal is to compare system results with and without distorted images. The results of the two methods with and without externally added deformations effect on the fingerprint image is compared. The first system has a feature-based approach comparing the images via local features on the fingerprint. In order to do this two different descriptors that are called ORB and SIFT are used. In the feature-based approach, there is also a matching part and this part is tried with two different matching algorithms that are called Brute Force Matcher and Approximate Nearest Neighbor (ANN) matcher. The second algorithm makes the decision of match or non-match by feeding the raw fingerprint images as an input to a deep neural network and comparing the feature vectors calculated by the network. This study has revealed that deep neural network approach has given more robust and faster results on both the original dataset and distorted versions of the dataset.

Benzer Tezler

  1. FPGA tababanlı, PCI ara yüzlü, gerçek zamanlı rasgele sayı üreteci sistemi tasarımı ve uygulamaları

    FPGA based real time statistical test system with PCI for random number genarator design and applications

    MURAT ERAT

    Doktora

    Türkçe

    Türkçe

    2008

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolErciyes Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. KENAN DANIŞMAN

  2. Çoklu ortam ses dosyalarının zaman-frekans yöntemiyle analizi ve karşılaştırılması

    Comparison and analysis of multimedia audio files with time-frequency method

    HAKAN UYANIK

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik Mühendisliğiİnönü Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MURAT KÖSEOĞLU

  3. Producing secure multimodal biometric descriptors using artificial neural networks

    Başlık çevirisi yok

    RAGHAD SAEED HASAN

    Doktora

    İngilizce

    İngilizce

    2021

    Elektrik ve Elektronik MühendisliğiAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ DOĞU ÇAĞDAŞ ATİLLA

    DR. ÖĞR. ÜYESİ ÇAĞATAY AYDIN

  4. Deep learning in fingerprint analysis

    Parmak izi analizinde derin öğrenme

    PELİN İRTEM

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİzmir Yüksek Teknoloji Enstitüsü

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ NESLİ ERDOĞMUŞ

  5. Sabit görüntüler ve video işaretleri için ayrık dalgacık dönüşümü ayrık kosinüs dönüşümü tabanlı sayısal damgalama yöntemi

    Discrete wavelet transform discrete cossine transform based digital watermarking scheme for still images and video signals

    SERKAN EMEK

    Doktora

    Türkçe

    Türkçe

    2006

    Elektrik ve Elektronik MühendisliğiYıldız Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. METİN YÜCEL