Distance construction and clustering of football player performance data
Başlık çevirisi mevcut değil.
- Tez No: 611853
- Danışmanlar: Belirtilmemiş.
- Tez Türü: Doktora
- Konular: Spor, İstatistik, Sports, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: İngilizce
- Üniversite: University of London - University College London
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 281
Özet
I present a new idea to map football players information by using multidimensional scaling, and to cluster football players. The actual goal is to define a proper distance measure between players. The data was assembled from whoscored.com. Variables are of mixed type, containing nominal, ordinal, count and continuous information. In the data pre-processing stage, four different steps are followed through for continuous and count variables: 1) representation (i.e., considerations regarding how the relevant information is most appropriately represented, e.g., relative to minutes played), 2) transformation (football knowledge as well as the skewness of the distribution of some count variables indicates that transformation should be used to decrease the effective distance between higher values compared to the distances between lower values), 3) standardisation (in order to make within-variable variations comparable), and 4) variable weighting including variable selection. In a final phase, all the different types of distance measures are combined by using the principle of the Gower dissimilarity (Gower, 1971). As the second part of this thesis, the aim was to choose a suitable clustering technique and to estimate the best number of clusters for the dissimilarity measurement obtained from football players data set. For this aim, different clustering quality indexes have been introduced, and as first proposed by Hennig (2017), a new concept to calibrate the clustering quality indexes has been presented. In this respect, Hennig (2017) proposed two random clustering algorithms, which generates random clustering points from which standardised clustering quality index values can be calculated and aggregated in an appropriate way. In this thesis, two new additional random clustering algorithms have been proposed and the aggregation of clustering quality indexes has been examined with different types of simulated and real data sets. At the end, this new concept has been applied on the dissimilarity measurement of football players.
Özet (Çeviri)
Özet çevirisi mevcut değil.
Benzer Tezler
- A methodology of swarm intelligence application in clustering based on neighborhood construction
Kümelemede komşuluk kurmaya dayalı sürü zekası uygulama metodolojisi
TÜLİN İNKAYA
Doktora
İngilizce
2011
Endüstri ve Endüstri MühendisliğiOrta Doğu Teknik ÜniversitesiEndüstri Mühendisliği Bölümü
PROF. DR. NUR EVİN ÖZDEMİREL
PROF. DR. SİNAN KAYALIGİL
- Tüm genom sekansından mikrosatellite dizilere özel primerler kullanılarak kesim haritası oluşturulmasıyla Xanthomonad'ların tür içi ayrımı
Intra-specific discrimination of Xanthomonads through the use of specific primers for microsatellite sequences in whole genome sequencing and the construction of a restriction map
ABDUL-BAASIT ABDUL-NASIR
Yüksek Lisans
Türkçe
2023
GenetikMuğla Sıtkı Koçman ÜniversitesiMoleküler Biyoloji ve Genetik Ana Bilim Dalı
PROF. DR. ÖMÜR BAYSAL
- Kod uyarımlı doğrusal öngörü yöntemi ve stokastik kod defteri arama işlemi için hızlı bir yöntem
Başlık çevirisi yok
H.ZEKİ ERDOĞAN
Yüksek Lisans
Türkçe
1994
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiPROF.DR. ERDAL PANAYIRCI
- On clustering and classification methods in biosequence analysis
Biyosekans analizinde kümeleme ve sınıflandırma yöntemleri üzerine
ÇAĞIN KANDEMİR ÇAVAŞ
Doktora
İngilizce
2010
BiyomühendislikDokuz Eylül Üniversitesiİstatistik Ana Bilim Dalı
PROF. DR. EFENDİ NASİBOĞLU
- Türkiye'deki illerin havadaki partiküler madde ve kükürt dioksit değerlerine göre kümeleme analizi ile sınıflandırılması
Classification of provinces in turkey according to the air conditional particulate and sulfur dioxide values by clustering analysis
TAMER SARI