Geri Dön

Distance construction and clustering of football player performance data

Başlık çevirisi mevcut değil.

  1. Tez No: 611853
  2. Yazar: SERHAT EMRE AKHANLI
  3. Danışmanlar: Belirtilmemiş.
  4. Tez Türü: Doktora
  5. Konular: Spor, İstatistik, Sports, Statistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: University of London - University College London
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 281

Özet

I present a new idea to map football players information by using multidimensional scaling, and to cluster football players. The actual goal is to define a proper distance measure between players. The data was assembled from whoscored.com. Variables are of mixed type, containing nominal, ordinal, count and continuous information. In the data pre-processing stage, four different steps are followed through for continuous and count variables: 1) representation (i.e., considerations regarding how the relevant information is most appropriately represented, e.g., relative to minutes played), 2) transformation (football knowledge as well as the skewness of the distribution of some count variables indicates that transformation should be used to decrease the effective distance between higher values compared to the distances between lower values), 3) standardisation (in order to make within-variable variations comparable), and 4) variable weighting including variable selection. In a final phase, all the different types of distance measures are combined by using the principle of the Gower dissimilarity (Gower, 1971). As the second part of this thesis, the aim was to choose a suitable clustering technique and to estimate the best number of clusters for the dissimilarity measurement obtained from football players data set. For this aim, different clustering quality indexes have been introduced, and as first proposed by Hennig (2017), a new concept to calibrate the clustering quality indexes has been presented. In this respect, Hennig (2017) proposed two random clustering algorithms, which generates random clustering points from which standardised clustering quality index values can be calculated and aggregated in an appropriate way. In this thesis, two new additional random clustering algorithms have been proposed and the aggregation of clustering quality indexes has been examined with different types of simulated and real data sets. At the end, this new concept has been applied on the dissimilarity measurement of football players.

Özet (Çeviri)

Özet çevirisi mevcut değil.

Benzer Tezler

  1. A methodology of swarm intelligence application in clustering based on neighborhood construction

    Kümelemede komşuluk kurmaya dayalı sürü zekası uygulama metodolojisi

    TÜLİN İNKAYA

    Doktora

    İngilizce

    İngilizce

    2011

    Endüstri ve Endüstri MühendisliğiOrta Doğu Teknik Üniversitesi

    Endüstri Mühendisliği Bölümü

    PROF. DR. NUR EVİN ÖZDEMİREL

    PROF. DR. SİNAN KAYALIGİL

  2. Tüm genom sekansından mikrosatellite dizilere özel primerler kullanılarak kesim haritası oluşturulmasıyla Xanthomonad'ların tür içi ayrımı

    Intra-specific discrimination of Xanthomonads through the use of specific primers for microsatellite sequences in whole genome sequencing and the construction of a restriction map

    ABDUL-BAASIT ABDUL-NASIR

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    GenetikMuğla Sıtkı Koçman Üniversitesi

    Moleküler Biyoloji ve Genetik Ana Bilim Dalı

    PROF. DR. ÖMÜR BAYSAL

  3. On clustering and classification methods in biosequence analysis

    Biyosekans analizinde kümeleme ve sınıflandırma yöntemleri üzerine

    ÇAĞIN KANDEMİR ÇAVAŞ

    Doktora

    İngilizce

    İngilizce

    2010

    BiyomühendislikDokuz Eylül Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. EFENDİ NASİBOĞLU

  4. Türkiye'deki illerin havadaki partiküler madde ve kükürt dioksit değerlerine göre kümeleme analizi ile sınıflandırılması

    Classification of provinces in turkey according to the air conditional particulate and sulfur dioxide values by clustering analysis

    TAMER SARI

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    İstatistikGazi Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. BÜLENT ÇELİK