Geri Dön

Analyzing social media data by frequent pattern mining methods

Sosyal medya verisinin sık kümeler madenciliği yöntemleri kullanılarak çözümlenmesi

  1. Tez No: 621664
  2. Yazar: BÜŞRA GÜVENOĞLU
  3. Danışmanlar: DOÇ. DR. BELGİN ERGENÇ BOSTANOĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: İzmir Yüksek Teknoloji Enstitüsü
  10. Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 67

Özet

Veri madenciliği, birçok araştırmacı tarafından incelenen ve büyük veri setinde öngörülemeyen ve önemli bilgileri bulma üzerine odaklanan popüler bir araştırma alanıdır. Sosyal medya verileri, sosyal ağ siteleri, mikrobloglar, fotoğraf veya video paylaşım sitelerinden toplanan en popüler ve büyük heterojen verilerden biridir. Sosyal medya, varlıkları ve onların ilişkilerini temsil eder. Veri madenciliği alanındaki büyük heterojen verileri temsil etmek için kullanılan popüler veri yapılarından biri graftır. Bir grafın düğümleri varlıkları, kenarları ise varlıklar arasındaki ilişkileri temsil eder. Dolayısıyla, graf madenciliği, veri madenciliğinin en popüler alt bölümlerinden biridir. Bir sık örüntü, bir veri kümesinde kullanıcı tanımlı eşiğe göre daha sık rastlanan örüntü olarak adlandırılır. Veri kümesindeki sık örüntüler veri kümesi hakkında önemli bilgiler verebilir. Bu bilgiyi kullanarak, veriler sınıflandırılabilir veya kümelenebilir. Sık örüntüler sosyoloji, tüketici davranışı, pazarlama, topluluklar açısından sosyal medya verilerine farklı bir bakış açısı sağlayabilir. Bu tez kapsamında popüler sık örüntü madenciliği algoritmaları incelenmiştir ve çoğu algoritmanın büyük veri setleri için uygun olmadığı gözlenmiştir. Günümüz dünyasındaki veriler, özellikle sosyal ağlar çok büyük verilere sahip olduğundan, var olan sık örüntü madenciliği algoritmaları bu veri setleri için uygun değildir. Bu tezin amacı, mevcut bir sık örüntü madenciliği algoritmasını paralel bir şekilde uygulamak ve bir sosyal medya verisinde sık örüntüleri bulmaktır.

Özet (Çeviri)

Data mining is a popular research area that has been studied by many researchers and focuses on finding unforeseen and important information in large dataset. Social media data is one of the most popular and large heterogeneous data collected from social networking sites, microblogs, photo or video sharing sites. Social media represents the entities and their relations. One of the popular data structures used to represent large heterogeneous data in the field of data mining is graphs. The nodes of a graph represent entities and the edges of a graph represent the relations between the entities. So, graph mining is one of the most popular subdivisions of data mining. A frequent pattern is referred to as pattern that is more frequently encountered than the user-defined threshold in a dataset. Frequent patterns in a dataset can give important information about dataset. Using this information, data can be classified or clustered. Frequent patterns can provide different perspective on social media data with respect to sociology, consumer behaviour, marketing, communities. In this thesis, popular frequent pattern mining algorithms have been examined and it has been observed that most algorithms are not suitable for large datasets. Since data in today's world, especially social networks, has very large data, the existing pattern mining algorithms are not suitable for this data. The aim of this thesis is to implement an existing frequent pattern mining algorithm in parallel manner and to find frequent patterns in a social media data.

Benzer Tezler

  1. Sık alt çizge madenciliği algoritmalarının kullanım alanları ve uygulanabilirliği

    Application areas and usage of frequent subgraph mining algorithms

    MEHMET SERDAR GÜR

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAydın Adnan Menderes Üniversitesi

    Yönetim Bilişim Sistemleri Ana Bilim Dalı

    PROF. DR. MUSTAFA ÇETİN

  2. Nosql veritabanı sistemlerinin performans karşılaştırılması ve analizi

    Comparison and analysis of the performance of nosql database systems

    SÜLEYMAN ÖNDER

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ABDULLAH SEVİN

  3. Yapay zekâ ve demokrasi

    Artificial intelligence and democracy

    AYŞE NUR YAZICILAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    HukukGalatasaray Üniversitesi

    Kamu Hukuku Ana Bilim Dalı

    PROF. DR. ŞULE ÖZSOY BOYUNSUZ

  4. Türkiye'de dijital gazetecilik rejimi: Haber üretim sürecinde teknoloji ve emek

    Digital journalistic regime in Turkey: Technology and labour in the process of news production

    EZGİ KAYA HAYATSEVER

    Doktora

    Türkçe

    Türkçe

    2024

    GazetecilikAnkara Üniversitesi

    Gazetecilik Ana Bilim Dalı

    PROF. DR. GÖKHAN ATILGAN

  5. Sosyal medya lokasyon analizi

    Social media location analysis

    YAHYA ALALI

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. NİLÜFER YURTAY