Geri Dön

Enhancing science learning through computational thinking and modeling in middle school classrooms: A mixed methods study

Başlık çevirisi mevcut değil.

  1. Tez No: 626138
  2. Yazar: OSMAN AKŞİT
  3. Danışmanlar: PROF. DANIŞMAN YOK
  4. Tez Türü: Doktora
  5. Konular: Eğitim ve Öğretim, Education and Training
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: North Carolina A&T State University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 175

Özet

Computational thinking and modeling are authentic practices that scientists and engineers use frequently in their daily work. Advances in modern computing technologies over the past couple of decades have further emphasized the centrality of modeling in science by making computationally-enabled model use and construction more accessible to scientists. For this reason, it is important for students to get exposed to these practices in K-12 science classrooms. This mixed-methods study investigated how a one-week intervention in regular middle school science classrooms that introduced computational thinking practices and simulation-based model building through a visual block-based programming environment influenced students' understanding of computational thinking concepts and practices as well as their conceptual understanding of a physical science topic, force and motion. The study also examined whether and how seventh-grade students' attitudes towards programming changed as a result of participating in the intervention course. Eighty-two seventh-grade students from a public middle school in the southeastern United States participated in the study. Quantitative data sources included pre- and post-tests of students' knowledge of computational thinking concepts and practices, force and motion concepts, and their attitudes towards programming. Qualitative data sources included classroom observation notes, interviews with students, and reflection statement responses. During the classroom intervention, students were introduced to computational thinking concepts and practices through a block-based programming environment called Scratch and constructed simulationbased computational models of physical phenomena. The findings of the study indicated that engaging in building computational models through Scratch programming environment in regular science classrooms resulted in significant conceptual learning gains for the sample of this study. The affordances of the dynamic nature of computational models let students both“observe”and“interact”with the target phenomenon in real time while the generative dimension of model construction promoted a rich classroom discourse facilitating conceptual learning. The results also indicated that students had more favorable attitudes towards programming on the post-test compared to the pre-test. This study contributes to the nascent literature on integrating computational modeling into K-12 science curricula by emphasizing the affordances and generative dimension of model construction through block-based programming.

Özet (Çeviri)

Özet çevirisi mevcut değil.

Benzer Tezler

  1. A new volterra neural network layer lıbrary usıng tensorflow

    Başlık çevirisi yok

    ZAKARIA FAYEZ ABD ALYAFAWI

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar ve Enformatik Mühendisliği Ana Bilim Dalı

    PROF. DR. DEVRİM AKGÜN

  2. Efficient deep learning approaches for signal and image analysis applications

    Sinyal ve görüntü analizi uygulamaları için verimli derin öğrenme yaklaşımları

    ONUR CAN KOYUN

    Doktora

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Bilimleri Ana Bilim Dalı

    PROF. DR. BEHÇET UĞUR TÖREYİN

  3. Yüksek çözünürlüklü görüntülerde derin öğrenme tabanlı nesne tespiti için yeni bir önişleme yöntemi geliştirilmesi

    Development of a new preprocessing method for deep learning based object detection in high resolution images

    MUHAMMED TELÇEKEN

    Doktora

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. DEVRİM AKGÜN

    PROF. DR. SEZGİN KAÇAR

  4. Havayolu yolculuk deneyimini iyileştirmek için makine öğrenmesi yöntemleriyle uçuş gecikmesi tahmini

    Machine learning techniques for enhancing airline passenger experience through flight delay prediction

    ESMA ERGÜN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SÜHA TUNA

  5. Enhancing grouping-scoring-modeling (G-S-M) approach through a statistical pre-scoring component: A case study for high-dimensional transcriptomic data analysis

    Istatistiksel ön puanlama bileşeni ile gruplama puanlama modellemesi (GSM) yaklaşımın geliştirilmesi: Yüksek boyutlu transkriptomik veri analizi için bir vaka çalışması

    MAHAM KHOKHAR

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilim ve TeknolojiAbdullah Gül Üniversitesi

    Veri Bilimi Ana Bilim Dalı

    DOÇ. DR. BURCU GÜNGÖR