Geri Dön

Giyilebilir sensörlerle sağlık izleme

Health monitoring via wearable sensors

  1. Tez No: 633748
  2. Yazar: TUNÇ AŞUROĞLU
  3. Danışmanlar: PROF. DR. HASAN OĞUL
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: Türkçe
  9. Üniversite: Başkent Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 186

Özet

Teknolojinin gelişmesiyle birlikte verinin toplanması, saklanması ve işlenmesi yaygınlaşmış ve bu sebepten giyilebilir sensör teknolojisi günlük hayatımızda gitgide popülerleşmeye başlamıştır. Giyilebilir sensörler ve akıllı tekstiller daha küçük, daha ucuz ve kullanıcı tarafından kolaylıkla erişilebilir hale geldikçe günlük aktivite takibi ve sağlık alanlarında yaygın olarak kullanımı artmıştır. Günümüzde giyilebilir sensör teknolojileri, sağlık alanında hastalıkları önleme, erken teşhis ve kronik durumların yönetimi için etkili bir araç olarak kullanılmaktadır. Sağlık alanında giyilebilir sensörlerin kullanılmasının asıl amacı, hastanın sağlık parametrelerinin uzaktan izlemeyebilme imkânı ve dolayısıyla hastaların bir sağlık merkezine gitmelerine gerek kalmadan evlerinde tedavi olabilmesi ve hastalık durumunu takip edebilmesine olanak sağlamaktır. Bu bağlamda, tez çalışmasında giyilebilir sensörlerle elde edilen sinyalleri kullanarak hastalık seviyesi takibi çalışmaları gerçekleştirilmiştir. Çalışmada bu amaçla, ölümcül bir enfeksiyon hastalığı olan Sepsis ve günümüzde tedavisi olmayan nörolojik bir hastalık olan Parkinson hastalığı üzerine çalışmalar yapılmıştır. Sepsis hastalığında giyilebilir sensörlerle kolayca elde edilebilen hayati belirtiler kullanılmıştır. Bu hayati belirtiler, hastalık durumunu takip etmeyi sağlayan organ yetmezliği skorunun tahmin edilmesinde kullanılmıştır. Parkinson hastalığı semptom seviyesi değer tahmini, ayağa giyilen ve ayağa uygulanan kuvveti ölçen giyilebilir sensörlerle yürüyüş analizi yapılarak gerçekleştirilmiştir. Bu tahminleri gerçekleştirmek için tez çalışmasında geleneksel makine öğrenmesi yöntemlerinin yanı sıra, derin öğrenme ve tez çalışması kapsamında geliştirilen CNN ve Rastgele Orman tabanlı derin öğrenme hibrit mimarileri kullanılmıştır. Değer tahmin analizinde, geliştirilen hibrit mimarilerinin geleneksel yöntemlere göre performans artışı sağladığı gözlemlenmiştir.

Özet (Çeviri)

With the development of technology, the collection, storage and processing of data has become widespread, and therefore wearable sensor technology has become increasingly popular in our daily life. As wearable sensors and smart textiles become smaller, cheaper and easily accessible by the user, they are widely used in daily activity tracking and healthcare. Wearable sensor technologies are used today as an effective tool for disease prevention, early disease detection and management of chronic conditions. The main purpose of using wearable sensors in the field of healthcare is to monitor the health parameters of patients remotely, and therefore to enable patients to be treated at home and prognose the disease status without having to go to a healthcare center. To achieve a baseline in this manner, experiments were carried out in this thesis using the signals obtained with wearable sensors to prognose diseases. For this purpose, a fatal infectious disease called Sepsis and a neurological disease without treatment called Parkinson's disease, were selected for thesis study. Vital signs that can be easily obtained with wearable sensors are used in Sepsis prognose experiments. These vital signs have been used to predict the organ failure score that allows monitoring the disease status. Parkinson's disease symptom level value estimation was performed by walking analysis with wearable shoe system that measures the force applied to the foot. In order to perform these predictions, CNN and Random Forest based deep learning hybrid architectures are developed. Also, experiments are conducted with traditional machine learning and deep learning architectures to validate the performance of this approach. In experimental results, it was observed that the developed hybrid architectures provide performance increase compared to traditional methods.

Benzer Tezler

  1. Human activity monitoring and recognition with multiple wearable sensors

    İnsan aktivitesinin çoklu giyilebilir sensörlerle izlenmesi ve tanınması

    BERKAN BOSTAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik MühendisliğiDokuz Eylül Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. YAVUZ ŞENOL

  2. Ambient intelligence and big data mergeed for wireless student health monitoring system in an IoT

    Başlık çevirisi yok

    SALMA ALHADEETHI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Bilgi Teknolojileri Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AYÇA KURNAZ TÜRKBEN

  3. Physiopatch: A multi-modal wearable device for continuous cardiovascular and cardiopulmonary monitoring

    Physiopatch: Sürekli ve non-ınvasif kardiyovasküler ve kardiyopulmoner takip için çoklu-modlu giyilebilir cihaz

    YUSUF ZİYA HAYIRLIOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik MühendisliğiKoç Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ BEREN SEMİZ GÜRSOY

  4. Bulut tabanlı çoklu akıllı kuvöz izleme sistemi tasarımı

    Cloud based multi incubator monitoring system design

    UĞUR ALTAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİskenderun Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AHMET GÖKÇEN

  5. E-health kalkan ve Arduino kullanılarak çoklu fizyolojik işaretlerin bilgisayar ortamında görüntülenmesi

    Viewing multiple physiological signs in computer system using e-health shield and Arduino

    HASAN DİNÇER EKMEKCİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAfyon Kocatepe Üniversitesi

    İnternet ve Bilişim Teknolojileri Yönetimi Ana Bilim Dalı

    DOÇ. DR. UÇMAN ERGÜN