Makine öğrenmesi yöntemleri ile banka pazarlama tahmini
Bank marketing prediction with machine learning methods
- Tez No: 663729
- Danışmanlar: PROF. DR. ÖZGÜR KORAY ŞAHİNGÖZ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: Türkçe
- Üniversite: İstanbul Kültür Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 55
Özet
Günümüzde aktif olarak hayatımızın büyük bir bölümünde yer alan mobil aletler ve internet ile, insanlar ve onlara çeşitli alanlarda hizmet eden şirketler birbirleri ile etkileşim yöntemlerini çoğunlukla bu iletişim organları üzerinden yapar hale gelmiştir. Bu süreçler genellikle firmaların kendi ürettikleri programlar üzerinden ya da var olan paket programlar kullanılarak sürdürülmektedir. Kullanılan bu programlar süreç mükemmelliği açısından önemli olmakla birlikte, bu programlar üzerinden elde edilen çeşitli işlenmiş ve işlenmemiş veriler son zamanlarda çok daha önem arz eder hale gelmiştir. Elde edilen bu verilerden özellikle müşteri verileri firmalar için altın niteliği kazanmıştır. Bu veriler işlenerek ve işlenen veriler üzerinden detaylı analizler çıkartılarak firmalar müşterilerini daha çok tanır hale gelmekte ve bunun sonucu olarak firmaların daha iyi pazarlama yöntemleri geliştirilmesine ve bu doğrultuda pazarlama sonuçlarında alınan verimin artmasına sebebiyet vermektedir. Bu nedenden dolayı firmalar son birkaç senedir verilerin önemini anlamış ve veri işleme çalışmalarını hızlandırmıştır. Veri işleme çalışmalarına hız veren firmalar arasında ülkelerin ekonomik gücü olan bankalarda bulunmaktadır. Bankalar müşterileri ile sayısız iletişime girerek, müşterilerinin finansal süreçlerini yönetmelerinde onlara kolaylık sağlayarak onlara destek olma amacındadırlar. Bu tez çalışmasında bir bankanın telefon görüşmeleri ile aradıkları kişiye bankalarında vadeli bir hesap açtırmaya çalıştığı ve bu çalışmalardaki başarı oranlarının sonuçlarının olduğu bir veri seti incelenecek olup, bu incelemeler doğrultusunda var olan sonuçların iyileştirilmesi için Karar Ağacı, Naif Bayes, K-En Yakın Komşu, Destek Vektör Makinesi, Rastsal Orman, Ekstra Ağaçlar, Adaboost, Gradient Boosting gibi makine öğrenmesi algoritmaları ile Uzun Kısa-Süreli Bellek, Geçitli Tekrarlayan Birim, Basit Tekrarlayan Sinir Ağları gibi derin öğrenme yöntemleri ilgili veri seti ile kullanılarak ayrıntılı ve karşılaştırmalı bir çalışma yapılmıştır.
Özet (Çeviri)
With mobile devices and the internet, which are actively involved in a large part of our lives today, people and companies serving them become on these communication organs by using their interactions with each other. These processes are usually carried out through the programs produced by the companies or by using existing package programs. Although these programs are important in terms of process excellence, various processed and unprocessed data obtained through these programs have become much more important recently. Especially customer data has gained importance for companies from these data obtained. By processing these data and making detailed analyzes on the processed data, companies become more familiar with their customers and as a result, companies develop better marketing methods and increase the efficiency of marketing results in this direction. For this reason, companies have understood the importance of data in the last few years and accelerated data processing. Among the companies that accelerate the data processing work are the banks with the economic power of the countries. Banks aim to support their customers by facilitating them in managing their financial processes by making numerous contacts with their customers. In this thesis, a data set in which a bank tries to open a time deposit account in their banks through phone calls and the results of the success rates in these studies will be examined. In order to improve the existing results with these examinations, some machine learning and deep learning algorithms such as; Decision Tree, Naive Bayes, K-Nearest Neighbor, Support Vector Mahines, Random Forest, Extra Trees, Gradient Boosting, Bagging, Artificial Neural Network, LSTM, GRU and SimpleRNN will be use.
Benzer Tezler
- Bankacılık sektöründe tüzel müşteriler için makine öğrenmesi yöntemleri ile terk analizi
Churn analysis with machine learning for corporate customers in banking industry
SÜMEYYE AYDIN
Yüksek Lisans
Türkçe
2021
Endüstri ve Endüstri MühendisliğiYıldız Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. NEZİR AYDIN
- Bankacılık sektöründe makine öğrenmesi yöntemleri ile müşteri segmentasyonu ve karlılık tahmini
Customer segmentation and profitability estimation through machine learning methods in the banking industry
ESMA ÇIRA
Yüksek Lisans
Türkçe
2022
Endüstri ve Endüstri MühendisliğiYıldız Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. ŞÜKRAN ŞEKER
- Kestirimsel analizde boyutluluk indirgenmesi ve makine öğrenmesi
Dimensionality reduction in predictive analytics and machine learning
UZOMA BENETH UZOSIKE
Yüksek Lisans
Türkçe
2020
İşletmeMersin Üniversitesiİşletme Bilgi Yönetimi Ana Bilim Dalı
DR. ÖĞR. ÜYESİ EVRİM ERSİN KANGAL
- Short term electrıcıty consumptıon forecastıng usıng long short-term memory cells
Uzun kisa vadeli̇ hafiza ağlari i̇le kisa vadeli̇ elektri̇k tüketi̇m tahmi̇ni̇
ANIL TÜRKÜNOĞLU
Yüksek Lisans
İngilizce
2019
Enerjiİstanbul Teknik ÜniversitesiEnerji Bilim ve Teknoloji Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BURAK BARUTÇU
- Demand forecasting in mobile phone industry
Mobil telefon endüstrisinde talep planlaması
ZEYNEP ÖRNEK
Yüksek Lisans
İngilizce
2018
Endüstri ve Endüstri MühendisliğiBahçeşehir ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. ADNAN ÇORUM