Performance analysis of signal de-noising techniques in distributed acoustic sensing systems
Dağıtılmış akustik algılama sistemlerinde gürültü azaltma tekniklerinin başarım analizi
- Tez No: 672091
- Danışmanlar: PROF. DR. ALİ KARA
- Tez Türü: Doktora
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: İngilizce
- Üniversite: Atılım Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Mühendislik Sistemlerinin Modellenmesi ve Tasarımı Ana Bilim Dalı
- Bilim Dalı: Elektrik Elektronik Mühendisliği Bilim Dalı
- Sayfa Sayısı: 75
Özet
Bu tez çalışmasında, fiber optik tabanlı akustik algılayıcı sistemlerde kullanılmak üzere, tehditlerin tespit ve sınıflandırılmasına yönelik özgün bir yöntem önerilmektedir. Yöntemin ilk aşamasında, ölçülen sinyalleri gürültüden arındırmak için dalgacık tabanlı gürültü düşürme tekniği uygulanmakta, ardından zaman düzleminde farklar ile filtreleme yapılmaktadır. Ayrıca bu aşamada, otokorelasyon kullanılarak menzil üzerinde aktivitelerin görünürlüğü de arttırılmaktadır. Sonrasında, yüksek korelasyon gösteren sinyallerin güçleri hesaplanarak, tehdit olabilecek etkinlikler/aktivasyonlar belirlenmeye çalışılmaktadır. Burada eşik değerleme yöntemi ile de aktivasyon olan menzil aralıkları tespit edilmektedir. Sonraki aşamada ise, tespit edilen aktivasyon sinyalleri, varyasyonel mode ayrıştırma tekniği ile modlara açılarak sınırlı-bantlı modlar ile yeniden oluşturulmaktadır. Ardındanda ileri derece istatistikler kullanılarak sinyal öznitelikleri çıkarılmaktadır. Son aşamada ise, doğrusal destek vektör makinaları kullanılarak tehditlerin sınıflandırılması yapılmaktadır. Yöntemin etkinliği, kısıtlı miktardaki tehdit ve ölçüm verisinin kanal gürültüsü ile zenginleştirilmesi suretiyle elde edilen genişletilmiş bir veriseti üzerinde test edilmiştir. Önerilen yöntemin tehdit tespit ve sınıflandırılmasında etkili olduğu görülmüştür.
Özet (Çeviri)
In this thesis, it is aimed to propose a novel method to detect and classify the threats for fiber optic distributed acoustic sensing (DAS) systems based on phase-OTDR. In the first stage of the proposed method, Wavelet de-noising method is applied to remove the noise from the measured backscattered signal, and difference in time domain approach is used to perform high-pass filtering. In this stage, autocorrelation is also used for improving interferometric visibility of the events in all range bins. Further, the power of the correlated signals at each bin is calculated and sorted. Hence, the maximum valued bins are considered to be the event signal. In the second stage, the detected event signals are decomposed into a series of band-limited modes by using VMD technique, and from these modes, the enhanced event signals are reconstructed. Moreover, from the reconstructed event signals, higher order statistical (HOS) features are extracted. In the last stage, Linear Support Vector Machine (LSVM)-based classification approach is implemented to the extracted features for discriminating the threats. In order to measure the effects of the proposed method on the classification performance, different types of activities collected from various points of a fiber optic cable have been used under different SNR levels. The results show the effectiveness of the proposed method in threat detection and classification.
Benzer Tezler
- Vibration-based fault detection for ball bearings
Bilyalı rulmanlarda titreşim verileri kullanılarak hasar tespiti
REZA GOLAFSHAN
Yüksek Lisans
İngilizce
2015
Makine Mühendisliğiİstanbul Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. KENAN YÜCE ŞANLITÜRK
- Roller bearing fault detection using rotary encoder
Açısal enkoder kullanarak bilyalı rulmanlarda hata tespiti
SAMET YALDIZ
Yüksek Lisans
İngilizce
2024
Makine Mühendisliğiİstanbul Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. KENAN YÜCE ŞANLITÜRK
- Evaluating effects of denoising and feature extraction methods on classification of EMG signals
Başlık çevirisi yok
ERCAN GÖKGÖZ
Doktora
İngilizce
2014
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolInternational Burch UniversityPROF. DR. ABDULHAMİT SUBAŞI
- Robust adaptive learning approach of artificial neural networks
Yapay sinir ağları için sağlam adaptif öğrenme yaklaşımı
ALAA ALI HAMEED HAMEED
Doktora
İngilizce
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. BARIŞ KOÇER
- RECURRENT NEURAL NETWORKS AND NEW WAVELET FUCTION FOR ANALYSIS AND CONTROL OF ELECTRICAL AND ENERGY SYSTEMS
ELEKTRIK VE ENERJI SISTEMLERININ ANALIZI VE KONTROLÜ IÇİN YENILENEN SINIR AĞLAR VE YENİ DALGALANMA FONKSIYONU
SAEID SHEIKHMEMARI
Yüksek Lisans
İngilizce
2024
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektrik Mühendisliği Ana Bilim Dalı
PROF. DR. ŞAHİN SERHAT ŞEKER