Tıbbi beyin MR görüntülerinde kitle tespiti için yeni bir evrişimsel sinir ağı modelinin geliştirilmesi
Development of a new convolutional neural network model for mass detection in medical brain MR images
- Tez No: 672257
- Danışmanlar: PROF. DR. BURHAN ERGEN
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: Türkçe
- Üniversite: Fırat Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Donanım Bilim Dalı
- Sayfa Sayısı: 84
Özet
Sağlık alanında yapay zekâ tabanlı sistemlerin geliştirilmesi hastaların tanı ve tedavi süreçlerine katkı sağlamaktadır. Bu kapsamda tanı koyma, kitle gibi özel bölge tespitinin doğru bir şekilde gerçekleşmesi ve hastalığın türünün belirlenmesi ve erken tanı gibi süreçler hem oldukça kritik hem de uzmanlık gerektiren emek-yoğun süreçlerdir. İlaveten, erken tanının gerçekleştirilmesinde zaman önemli bir faktördür. Bir diğer önemli faktör ise doğruluk oranıdır. Literatürde bu tür çalışmalar için çeşitli derin öğrenme modelleri ve makine öğrenme yöntemleri kullanılmıştır. Bu tez çalışmasında, tıbbi Manyetik Rezonans (MR) görüntüleri kullanılarak kitle tespitini gerçekleştirebilen yeni bir Evrişimsel Sinir Ağı (ESA) modeli tasarlanmıştır. Deneysel analizler, beyin MR görüntülerinden oluşan veri kümeleri kullanılarak gerçekleştirilmiştir. Her bir veri kümesi üç farklı kategoriden oluşan beyin MR görüntüleri içermektedir. Geliştirilen ESA modelinde evrişimsel bloklar, yoğun ve artık bloklar, dikkat modülleri yer almaktadır. Bölütleme yöntemi ve hiper sütun tekniği gibi yaklaşımların kitlesel bölgenin doğru tespit edilmesi amacıyla kullanılmıştır. Ayrıca bu modelinin mimari yapısı kullanıcılar tarafından ayarlanabilen bir niteliğe sahiptir ve transfer öğrenme yaklaşımı kullanılmadan tasarlanmıştır. Bu tez kapsamında gerçekleştirilen deneysel analizlerin, aynı veri kümelerini kullanan diğer çalışmalardaki yaklaşımlara ve transfer öğrenme modellerine göre daha başarılı sonuçlar verdiği gözlemlenmiştir. Beyin MR görüntülerindeki kitle türü tespitinin gerçekleştirilmesinde ve sınıflandırılması sürecinde önerilen yaklaşımın katkı sağladığı görülmüştür.
Özet (Çeviri)
Development of artificial intelligence-based system in the field of health contributes to the diagnosis and treatment process of patients. In this context, processes such as diagnosis, accurate determination of specific regions such as mass, determination of the type of the disease and early diagnosis are both highly critical and labor-intensive processes that require expertise. In addition, time is an important factor in achieving early diagnosis. Another important factor is the accuracy rate. Various deep learning models and machine learning methods have been used for such studies in the literature. In this thesis, a new Convolutional Neural Network (CNN) model that can detect mass using medical Magnetic Resonance (MR) images is designed. Experimental analyzes were carried out using datasets consisting of brain MR images. Each dataset contains brain MR images consisting of three different categories. The developed ESA model includes convolutional blocks, dense and residual blocks, and attention modules. Approaches such as the segmentation method and the hyper column technique have been used to accurately determine the mass region. Also, the architectural structure of this model has an attribute that can be adjusted by users and it was designed without using a transfer learning approach. It has been observed that the experimental analyzes performed within the scope of this thesis give more successful results than the approaches and transfer learning models in other studies using the same datasets. It has been observed that the proposed approach contributed to the determination and classification of the type of mass in brain MR images.
Benzer Tezler
- Beyin MR görüntülerinde gizlilik tabanlı yaklaşım : Federe öğrenme
Privacy-based approach to brain MRI: Federated learning
ŞEVKET AY
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Uygulamalı Bilimler ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ EKİN EKİNCİ
DR. ÖĞR. ÜYESİ ZEYNEP GARİP
- Evrişimsel sinir ağı ve görü dönüştürücü mimarileri kullanılarak MR görüntülerinde beyin tümörlerinin otomatik sınıflandırılması
Automatic classification of brain tumors in MR images using convolutional neural network and vision transformer architectures
ÖMER MİRAÇ KÖKÇAM
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat ÜniversitesiYazılım Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MUHAMMED EMRE ÇOLAK
- Vascular segmentation of brain MR angiography images using convolutional neural networks
Evrişimsel sinir ağları kullanarak beyin MR anjiyografi görüntülerinin vasküler segmentasyonu
YUSUF HÜSEYİN ŞAHİN
Yüksek Lisans
İngilizce
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. GÖZDE ÜNAL
- MR görüntülerinde veri analizi ve eksik verinin tamamlanması: Demans hastalıkları uygulaması
Data analysis in MR images and imputing missing data: An application for dementia diseases
SAVAŞ OKYAY
Doktora
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEskişehir Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. NİHAT ADAR
- Parametrik model kullanarak tıbbi görüntülerde kenar belirleme
Edge detection using parametric model in medical images
HAYATİ TÜRE
Yüksek Lisans
Türkçe
2003
Elektrik ve Elektronik MühendisliğiKaradeniz Teknik ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. TEMEL KAYIKÇIOĞLU