Applications of point process models to imaging an biology
Başlık çevirisi mevcut değil.
- Tez No: 680149
- Danışmanlar: DR. SATİSH IYENGAR
- Tez Türü: Doktora
- Konular: İstatistik, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2016
- Dil: İngilizce
- Üniversite: University of Pittsburgh
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: İstatistik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 117
Özet
Özet yok.
Özet (Çeviri)
This dissertation deals with point process models and their applications to imaging and messenger RNA (mRNA) transcription. We address three problems. The first problem arises in two-photon laser scanning microscopy. We model the process by which photons are counted by a detector which suffers from a dead period upon registration of a photon. In this model, we assume that there are a Poisson (α) number of excited molecules, with exponentially distributed waiting times for the emissions of photons. We derive the exact distribution of all observed counts, rather than grouped counts which were used earlier. We use it to get improved estimates of the Poisson intensity, which leads to images with higher signal-to-noise ratio. This improvement is because grouping of count data results in loss of information. We illustrate this improvement on imaging data of paper fibers. Next, we study two variants of this model: the first uses a finite time horizon and the second considers gamma waiting times for the emissions. The second problem concerns the Conway-Maxwell-Poisson distribution for count data. This family has been proposed as a generalization of the Poisson for handling overdispersion and underdisperson. Because the normalizing constant of this family is hard to compute, good approximations for it are needed. We provide a statistical approach to derive an existing approximation more simply. However, this approximation does not perform well across all the parameter ranges. Therefore, we introduce correction terms to improve its performance. For other parts of the parameter space, we use the geometric and Bernoulli distributions, with correction terms based on Taylor expansions. Using numerical examples, we show thatour approximations are much better than earlier proposed methods. In the last problem, we present a new application for Conway-Maxwell-Poisson family. We use the generalized linear model setting of this family to study mRNA counts. We then compare its performance with the existing methods used for modeling mRNAs, such as the negative binomial. This empirical model can be a good modeling tool for dispersed mRNA count data when a biophysically based model is not available.
Benzer Tezler
- Grafik işlemci birimi üzerinde genel amaçlı hesaplama yöntemi ile görüntülerin gerçek zamanlı ortorektifikasyonu
Real time orthorectification of images by general purpose computation on graphical processing units method
HAKAN ŞAHİN
Doktora
Türkçe
2016
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET SITKI KÜLÜR
- Biyomagnetik olaylar
Başlık çevirisi yok
M.TOGAN ÇANDIR
Yüksek Lisans
Türkçe
1996
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiPROF.DR. İNCİ AKKAY
- Plazma aktüatörlerin sağanak etkilerinin hafifletilmesi için potansiyel kullanımının araştırılması
Investigation of the potential use of plasma actuators for gust mitigation
GÖKÇEN JURNAL
Yüksek Lisans
Türkçe
2024
Havacılık ve Uzay Mühendisliğiİstanbul Teknik ÜniversitesiSavunma Teknolojileri Ana Bilim Dalı
PROF. DR. NURİYE LEMAN OKŞAN ÇETİNER YILDIRIM
DR. ÖĞR. ÜYESİ CEM KOLBAKIR
- İmalat sistemlerinin tasarlanması ve öncelik kurallarının belirlenmesinde yapay sinir ağlarının kullanılması
Başlık çevirisi yok
TARIK ÇAKAR
Doktora
Türkçe
1997
Mühendislik Bilimleriİstanbul Teknik Üniversitesiİşletme Mühendisliği Ana Bilim Dalı
PROF. DR. AYHAN TORAMAN